REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., De-
vin, M., Ghemawat, S., Goodfellow, I., Harp, A., Ir-
ving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Man
´
e, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Vi
´
egas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). Tensorflow: Large-scale machine
learning on heterogeneous systems.
Escaler, X., Egusquiza, E., Farhat, M., Avellan, F., and
Coussirat, M. (2006). Detection of cavitation in hy-
draulic turbines. Mechanical systems and signal pro-
cessing, 20(4):983–1007.
Finesso, L. and Spreij, P. (2004). Nonnegative matrix fac-
torization and i-divergence alternating minimization.
Gal, Y. and Ghahramani, Z. (2015). Dropout as a baye-
sian approximation: Representing model uncertainty
in deep learning.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial networks.
Gregg, S., Steele, J., and Van Bossuyt, D. (2017). Machine
learning: A tool for predicting cavitation erosion rates
on turbine runners. Hydro Review, 36(3):28–36.
Ioffe, S. and Szegedy, S. (2015). Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift.
Koivula, T. (2000). On cavitation in fluid power. In Procee-
dings of 1st FPNI-PhD Symposium.
Lukic, Y., Vogt, C., Durr, O., and Stadelmann, T. (2016).
Speaker identification and clustering using convoluti-
onal neural networks. In IEEE International Confe-
rence on Acoustic, Speech and Signal Processing.
Mesaros, A., Heittola, T., Diment, A., Elizalde, B., Shah,
A., Vincent, E., Raj, B., and Virtanen, T. (2017).
DCASE 2017 challenge setup: Tasks, datasets and ba-
seline system. In Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2017
Workshop (DCASE2017).
Odena, A. (2016). Semi-supervised learning with genera-
tive adversarial networks.
Odena, A., Olah, C., and Shlens, J. (2016). Conditional
image synthesis with auxiliary classifier gans.
Sahidullah, M. and Saha, G. (2012). Design, analysis
and experimental evaluation of block based transfor-
mation in mfcc computation for speaker recognition.
Speech Communication, 54(4):543 – 565.
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. (2016). Improved techni-
ques for training gans.
Schmidt, H., Kirschner, O., and Riedelbauch, S. (2014). In-
fluence of the vibro-acoustic sensor position on cavita-
tion. In Proceedings of 27th Symposiom on Hydraulic
Machinery and Systems.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15:1929–1958.
Stowell, D., Wood, M., Stylianou, Y., and Glotin, H. (2016).
Bird detection in audio: a survey and a challenge.
Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., and Gao, R.
(2016). Deep learning and its applications to machine
health monitoring: A survey.
ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods
462