ledges funding from FCT (Portuguese Foundation
for Science and Technology) through a PhD grant
(SFRH/BD/119108/2016)
REFERENCES
Bracewell, D. B., Ren, F., and Kuriowa, S. (2005). Multi-
lingual single document keyword extraction for infor-
mation retrieval. In 2005 International Conference on
Natural Language Processing and Knowledge Engi-
neering, pages 517–522.
Brazdil, P., Trigo, L., Cordeiro, J., Sarmento, R., and Vali-
zadeh, M. (2015). Affinity mining of documents sets
via network analysis, keywords and summaries. Oslo
Studies in Language, 7(1).
Charikar, M., Chen, K., and Farach-Colton, M. (2002). Fin-
ding frequent items in data streams. In Proceedings of
the 29th International Colloquium on Automata, Lan-
guages and Programming, ICALP ’02, pages 693–
703, London, UK, UK. Springer-Verlag.
Corney, D., Albakour, D., Martinez, M., and Moussa, S.
(2016). What do a million news articles look like?
In Proceedings of the First International Workshop
on Recent Trends in News Information Retrieval co-
located with 38th European Conference on Informa-
tion Retrieval (ECIR 2016), Padua, Italy, March 20,
2016., pages 42–47.
Demaine, E. D., L
´
opez-Ortiz, A., and Munro, J. I. (2002).
Frequency estimation of internet packet streams with
limited space. In Algorithms-ESA 2002, pages 348–
360. Springer.
Desikan, P., Pathak, N., Srivastava, J., and Kumar, V.
(2005). Incremental page rank computation on evol-
ving graphs. In Special Interest Tracks and Posters
of the 14th International Conference on World Wide
Web, WWW ’05, pages 1094–1095, New York, NY,
USA. ACM.
Gama, J. (2010). Knowledge Discovery from Data Streams.
Chapman & Hall/CRC, 1st edition.
Gazendam, L., Wartena, C., and Brussee, R. (2010). The-
saurus based term ranking for keyword extraction. In
Database and Expert Systems Applications, DEXA,
International Workshops, Bilbao, Spain, August 30 -
September 3, 2010, pages 49–53.
Litvak, M., Last, M., Aizenman, H., Gobits, I., and Kan-
del, A. (2011). DegExt — A Language-Independent
Graph-Based Keyphrase Extractor, pages 121–130.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Liu, Z., Li, P., Zheng, Y., and Sun, M. (2009). Cluste-
ring to find exemplar terms for keyphrase extraction.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 1 -
Volume 1, EMNLP ’09, pages 257–266, Stroudsburg,
PA, USA. Association for Computational Linguistics.
Manku, G. S. and Motwani, R. (2002). Approximate fre-
quency counts over data streams. In Proceedings of
the 28th International Conference on Very Large Data
Bases.
Metwally, A., Agrawal, D., and El Abbadi, A. (2005). Ef-
ficient computation of frequent and top-k elements in
data streams. In Proceedings of the 10th Internatio-
nal Conference on Database Theory, ICDT’05, pages
398–412, Berlin, Heidelberg. Springer-Verlag.
Mihalcea, R. and Tarau, P. (2004). TextRank: Bringing or-
der into texts. In Proceedings of EMNLP-04and the
2004 Conference on Empirical Methods in Natural
Language Processing.
Page, L., Brin, S., Motwani, R., and Winograd, T. (1998).
The pagerank citation ranking: Bringing order to the
web. In Proceedings of the 7th International World
Wide Web Conference, pages 161–172, Brisbane, Au-
stralia.
RDICCR (2015). Published data from r&d is of the czech
republic - research, development and innovation coun-
cil of the czech republic (rdiccr). http://www.isvav.cz/.
Accessed: 2015-09-30.
Rose, S., Engel, D., Cramer, N., and Cowley, W. (2010).
Automatic keyword extraction from individual docu-
ments. In Berry, M. W. and Kogan, J., editors, Text
Mining. Applications and Theory, pages 1–20. John
Wiley and Sons, Ltd.
Shin, Y., Ryo, C. Y., and Park, J. (2014). Automatic ex-
traction of persistent topics from social text streams.
World Wide Web, 17(6):1395–1420.
Siddiqi, S. and Sharan, A. (2015). Article: Keyword
and keyphrase extraction techniques: A literature re-
view. International Journal of Computer Applicati-
ons, 109(2):18–23. Full text available.
ICEIS 2018 - 20th International Conference on Enterprise Information Systems
370