He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resi-
dual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information
Processing Systems 25, pages 1097–1105.
Maaten, L. v. d. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of Machine Learning Research,
9(Nov):2579–2605.
Mohanty, S. P., Hughes, D. P., and Salath
´
e, M. (2016).
Using Deep Learning for Image-Based Plant Disease
Detection. Frontiers in Plant Science, 7:1419.
Murtagh, F. (1983). A survey of recent advances in hierar-
chical clustering algorithms. The Computer Journal,
26(4):354–359.
O’Hara, S. and Draper, B. A. (2011). Introduction to the
bag of features paradigm for image classification and
retrieval. arXiv preprint arXiv:1101.3354.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Du-
chesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to
the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53–65.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252.
Sculley, D. (2010). Web-scale k-means clustering. In
Proceedings of the 19th international conference on
World wide web, pages 1177–1178. ACM.
Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carls-
son, S. (2014). Cnn features off-the-shelf: an astoun-
ding baseline for recognition. In Proceedings of the
IEEE conference on computer vision and pattern re-
cognition workshops, pages 806–813.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wo-
jna, Z. (2016). Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2818–2826.
Tishby, N., Pereira, F. C., and Bialek, W. (2000). The
information bottleneck method. arXiv preprint phy-
sics/0004057.
Vinh, N. X., Epps, J., and Bailey, J. (2010). Informa-
tion theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for
chance. Journal of Machine Learning Research,
11(Oct):2837–2854.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In European confe-
rence on computer vision, pages 818–833. Springer.
Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch:
an efficient data clustering method for very large da-
tabases. In ACM Sigmod Record, volume 25, pages
103–114. ACM.
Coarse Clustering and Classification of Images with CNN Features for Participatory Sensing in Agriculture
495