text demonstrate the effectiveness and usefulness of
our approach compared to state-of-the-art techniques.
Thus, our model could be applied to intelligent sys-
tems for multiple agents and/or autonomous systems’
navigation and guidance aid.
REFERENCES
Allen, J. (1983). Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–
843.
Artale, A. and Franconi, E. (1999). Introducing temporal
description logics. In Proceedings of the IEEE Inter-
national Workshop on Temporal Representation and
Reasoning (TIME), pages 2–5.
Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F. (2010). The Description
Logic Handbook: Theory, Implementation and Appli-
cations. Cambridge University Press, 2nd. edition.
Barber, F. and Moreno, S. (1997). Representation of con-
tinuous change with discrete time. In Proceedings of
the IEEE International Symposium on Temporal Rep-
resentation and Reasoning (TIME), pages 175–179.
Beleznai, C., Fruhstuck, B., and Bischof, H. (2006). Multi-
ple object tracking using local PCA. In Proceedings of
the IEEE International Conference on Pattern Recog-
nition (ICPR), pages 79–82.
Beleznai, C. and Schreiber, D. (2010). Multiple ob-
ject tracking by hierarchical association of spatio-
temporal data. In Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP), pages
41–44.
Belouaer, L., Bouzid, M., and Mouhoub, M. (2012). Dy-
namic path consistency for spatial reasoning. In Pro-
ceedings of the IEEE International Conference on
Tools with Artificial Intelligence (ICTAI), pages 1004–
1009.
Bennett, B., Magee, D., Cohn, A., and Hogg, D. (2008).
Enhanced tracking and recognition of moving objects
by reasoning about spatio-temporal continuity. Image
and Vision Computing, 26(1):67–81.
Bolotov, A. and Dixon, C. (2000). Resolution for branch-
ing time temporal logics: Applying the temporal reso-
lution rule. In Proceedings of the IEEE International
Symposium on Temporal Representation and Reason-
ing (TIME), pages 163–172.
Brehar, R., Fortuna, C., Bota, S., Mladenic, D., and Nede-
vschi, S. (2011). Spatio-temporal reasoning for traffic
scene understanding. In Proceedings of the IEEE In-
ternational Conference on Intelligent Computer Com-
munication and Processing, pages 377–384.
Cooharojananone, N., Kasamwattanarote, S., Satoh, S., and
Lipikorn, R. (2010). Real-time trajectory search in
video summarization using direct distance transform.
In Proceedings of the IEEE International Conference
on Signal Processing, pages 932–935.
Dash, T., Mishra, G., and Nayak, T. (2012). A novel ap-
proach for intelligent robot path planning. In Proceed-
ings of the AIRES Conference, pages 388–391.
Dean, T. and McDermott, D. (1987). Temporal data base
management. Artificial Intelligence, 32(1):1–55.
Gagne, D. and Trudel, A. (1996). A topological transi-
tion based logic for the qualitative motion of objects.
In Proceedings of the IEEE International Symposium
on Temporal Representation and Reasoning (TIME),
pages 176–181.
Halpern, J. and Shoham, Y. (1991). A propositional
modal logic of time intervals. Journal of the ACM,
38(4):935–962.
Kalantar, B., Mansor, S. B., Halin, A. A., Shafri, H. Z. M.,
and Zang, M. (2017). Multiple moving object detec-
tion from UAV videos using trajectories of matched
regional adjacency graphs. IEEE Transactions on
Geoscience and Remote Sensing, 55(9):5198–5213.
Kohler, C., Ottlik, A., Nagel, H.-H., and Nebel, B. (2004).
Qualitative reasoning feeding back into quantitative
model-based tracking. In Proceedings of the Eu-
ropean Conference on Artificial Intelligence (ECAI),
pages 1041–1042.
Kowalski, R. and Sergot, M. (1986). A logic-based calculus
of events. New Generation Computing, 6795(4):217–
240.
Ligozat, G. (2012). Qualitative Spatial and Temporal Rea-
soning. John Wiley & Sons.
Meyer, F. and Bouthemy, P. (1993). Exploiting the temporal
coherence of motion for linking partial spatiotemporal
trajectories. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 746–747.
Min, J. and Kasturi, R. (2004). Extraction and temporal
segmentation of multiple motion trajectories in hu-
man motion. In Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recongi-
tion Workshop (CVPR).
Olszewska, J. (2015). 3D Spatial reasoning using the clock
model. In Research and Development in Intelligent
Systems, volume 32, pages 147–154. Springer.
Olszewska, J. (2017a). Clock-model-assisted agent’s spa-
tial navigation. In Proceedings of the Interna-
tional Conference on Agents and Artificial Intelli-
gence (ICAART’17), pages 687–692.
Olszewska, J. (2017b). Detecting hidden objects using ef-
ficient spatio-temporal knowledge representation. In
Revised Selected Papers of the International Confer-
ence on Agents and Artificial Intelligence. Lecture
Notes in Computer Science, volume 10162, pages
302–313.
Olszewska, J. I. (2011). Spatio-temporal visual ontology. In
Proceedings of the BMVA-EACL Workshop on Vision
and Language.
Summers-Stay, D., Cassidy, T., and Voss, C. R. (2014).
Joint navigation in commander/robot teams: Dia-
log and task performance when vision is bandwidth-
limited. In Proceedings of the ACL International
Conference on Computational Linguistics Workshop
(COLING), pages 9–16.
Cylindric Clock Model to Represent Spatio-temporal Trajectories
563