segmentation by incorporating results from face de-
tection. IEEE International Workshop on Robot and
Human Interactive Communication, pages 337–343.
Gracheva, I. and Kopylov, A. (2017). Image processing al-
gorithms with structure transferring properties on the
basis of gamma-normal model. Communications in
Computer and Information Science, 661:257–268.
Gracheva, I., Kopylov, A., and Krasotkina, O. (2015). Fast
global image denoising algorithm on the basis of non-
stationary gamma-normal statistical model. Com-
munications in Computer and Information Science,
542:71–82.
Hassanpour, R., Shahbahrami, A., and Wong, S. (2008).
Adaptive gaussian mixture model for skin color seg-
mentation. World Academy of Science, Engineering
and Technology, 31(July):1–6.
He, K., Sun, J., and Tang, X. (2013). Guided image filtering.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(6):1397–1409.
Hikal, N. A. and Kountchev, R. (2011). Skin color segmen-
tation using adaptive pca and modified elliptic bound-
ary model. Advanced Computer Science and Infor-
mation System (ICACSIS), 2011 International Confer-
ence, pages 407–412.
Hsieh, C. C., Liou, D. H., and Lai, W. R. (2012). Enhanced
face-based adaptive skin color model. Journal of Ap-
plied Science and Engineering, 15(2):167–176.
Jones, M. and Viola, P. (2003). Fast multi-view face detec-
tion. Mitsubishi Electric Research Lab TR2000396,
(July).
Jones, M. J. and Rehg, J. M. (2002). Statistical color mod-
els with application to skin detection. International
Journal of Computer Vision, 46(1):81–96.
Junqiu, W. and Yagi, Y. (2008). Integrating color and shape-
texture features for adaptive real-time object tracking.
IEEE Transactions on Image Processing, 2(17):235–
240.
Kakumanu, P., Makrogiannis, S., and Bourbakis, N. (2007).
A survey of skin-color modeling and detection meth-
ods. Pattern Recognition, 40(3):1106–1122.
Kim, K., Chalidabhongse, T. H., Harwood, D., and Davis,
L. (2005). Real-time foreground-background segmen-
tation using codebook model. Real-Time Imaging,
11(3):172–185.
Krasotkina, O., Kopylov, A., Mottl, V., and Markov, M.
(2010). Bayesian estimation of time-varying regres-
sion with changing time-volatility for detection of hid-
den events in non-stationary signals. 7th IASTED In-
ternational Conference on Signal Processing, Pattern
Recognition and Applications, pages 8–15.
Kushnir, O. and Seredin, O. (2015). Shape matching based
on skeletonization and alignment of primitive chains.
Communications in Computer and Information Sci-
ence, 542:123–136.
Larin, A., Seredin, O., Kopylov, A., Kuo, S. Y., Huang,
S. C., and Chen, B. H. (2014). Parametric represen-
tation of ob jects in color space using oneclass clas-
sifiers. International Workshop on Machine Learn-
ing and Data Mining in Pattern Recognition. Springer,
Cham., pages 300–314.
Mottl, V. and Blinov, A. (1998). Optimization techniques
on pixel neighborhood graphs for image processing.
Graph-Based Representations in Pattern Recognition,
12(Computing. Supplement, 0344-8029):135–145.
Oka, K., Sato, Y., and Koike, H. (2002). Real-time finger-
tip tracking and gesture recognition. IEEE Computer
Graphics and Applications, 22(6):64–71.
Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M.,
Hoppe, H., and Toyama, K. (2004). Digital photogra-
phy with flash and no-flash image pairs. ACM Trans-
actions on Graphics, 23(3):664.
Phung, S., Bouzerdoum, A., and Chai, D. (2005). Skin
segmentation using color pixel classification: analy-
sis and comparison. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(1):148–154.
Piccardi, M. (2004). Background subtraction tech-
niques: a review. 2004 IEEE International Confer-
ence on Systems, Man and Cybernetics (IEEE Cat.
No.04CH37583), 4:3099–3104.
Rehg, J. and Kanade, T. (1995). Model-based tracking
of self-occluding articulated objects. Proceedings of
IEEE International Conference on Computer Vision,
pages 612–617.
Sabeti, L. and Wu, Q. M. J. (2007). High-speed skin color
segmentation for real-time human tracking. 2007
IEEE International Conference on Systems, Man and
Cybernetics, pages 2378–2382.
Shiravandi, S., Rahmati, M., and Mahmoudi, F. (2013).
Hand gestures recognition using dynamic bayesian
networks. 2013 3rd Joint Conference of AI and
Robotics and 5th RoboCup Iran Open International
Symposium, pages 1–6.
Suarez, J. and Murphy, R. R. (2012). Hand gesture recog-
nition with depth images: A review. Ro-Man, 2012
Ieee, pages 411–417.
Tax, D. M. J. and Duin, R. P. W. (2004). Support vector data
description. Machine Learning , 54(1):45–66.
Vezhnevets, V., Sazonov, V., and Andreeva, A. (2003). A
survey on pixel-based skin color detection techniques.
Proceedings of GraphiCon 2003, 85(0896-6273 SB -
IM):85–92.
Wimmer, F. and Munchen (2005). Adaptive skin color
classificator. Proc. of the first ICGST International
Conference on Graphics Vision and Image Processing
GVIP-05, (December):324–327.
Zhang, J., Cao, Y., and Wang, Z. (2014). A new image filter-
ing method: Nonlocal image guided averaging. 2014
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), (2012):2479–2483.
Zhu, Y., Yang, Z., and Yuan, B. (2013). Vision based hand
gesture recognition. Service Sciences (ICSS), 2013 In-
ternational Conference on, 3(1):260–265.
ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods
510