ing of the execution of operations in MCTS which
provide different pipeline constructions. We consider
the flexibility an even more important characteristic
of 3PMCTS. For future work, we will study the ef-
fectiveness of 3PMCTS with regards to the different
pipeline constructions.
ACKNOWLEDGEMENTS
This work is supported in part by the ERC Advanced
Grant no. 320651, “HEPGAME.”
REFERENCES
Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. (2012). A Survey of
Monte Carlo Tree Search Methods. Computational
Intelligence and AI in Games, IEEE Transactions on,
4(1):1–43.
Chaslot, G., Winands, M., and van den Herik, J. (2008a).
Parallel Monte-Carlo Tree Search. In the 6th Interna-
tioal Conference on Computers and Games, volume
5131, pages 60–71. Springer Berlin Heidelberg.
Chaslot, G. M. J. B., Winands, M. H. M., van den Herik, J.,
Uiterwijk, J. W. H. M., and Bouzy, B. (2008b). Pro-
gressive strategies for Monte-Carlo tree search. New
Mathematics and Natural Computation, 4(03):343–
357.
Coulom, R. (2006). Efficient Selectivity and Backup Op-
erators in Monte-Carlo Tree Search. In Proceed-
ings of the 5th International Conference on Comput-
ers and Games, volume 4630 of CG’06, pages 72–83.
Springer-Verlag.
Enzenberger, M. and M¨uller, M. (2010). A lock-free mul-
tithreaded Monte-Carlo tree search algorithm. Ad-
vances in Computer Games, 6048:14–20.
Fern, A. and Lewis, P. (2011). Ensemble Monte-Carlo Plan-
ning: An Empirical Study. In ICAPS, pages 58–65.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. Adaptive Computation and Machine Learn-
ing Series. MIT Press.
Hassabis, D. and Silver, D. (2017). Alphago’s next move.
Kocsis, L. and Szepesv´ari, C. (2006). Bandit based Monte-
Carlo Planning Levente. In F¨urnkranz, J., Scheffer, T.,
and Spiliopoulou, M., editors, ECML’06 Proceedings
of the 17th European conference on Machine Learn-
ing, volume 4212 of Lecture Notes in Computer Sci-
ence, pages 282–293. Springer Berlin Heidelberg.
Kuipers, J., Plaat, A., Vermaseren, J., and van den Herik, J.
(2013). Improving Multivariate Horner Schemes with
Monte Carlo Tree Search. Computer Physics Commu-
nications, 184(11):2391–2395.
Kuipers, J., Ueda, T., and Vermaseren, J. A. M. (2015).
Code optimization in FORM. Computer Physics Com-
munications, 189(October):1–19.
McCool, M., Reinders, J., and Robison, A. (2012). Struc-
tured Parallel Programming: Patterns for Efficient
Computation. Elsevier.
Mirsoleimani, S. A., Plaat, A., van den Herik, J., and Ver-
maseren, J. (2015a). Parallel Monte Carlo Tree Search
from Multi-core to Many-core Processors. In ISPA
2015 : The 13th IEEE International Symposium on
Parallel and Distributed Processing with Applications
(ISPA), pages 77–83, Helsinki.
Mirsoleimani, S. A., Plaat, A., van den Herik, J., and Ver-
maseren, J. (2015b). Scaling Monte Carlo Tree Search
on Intel Xeon Phi. In Parallel and Distributed Systems
(ICPADS), 2015 20th IEEE International Conference
on, pages 666–673.
Reinders, J. (2007). Intel threading building blocks: out-
fitting C++ for multi-core processor parallelism. ”
O’Reilly Media, Inc.”.
Ruijl, B., Vermaseren, J., Plaat, A., and van den Herik, J.
(2014). Combining Simulated Annealing and Monte
Carlo Tree Search for Expression Simplification. Pro-
ceedings of ICAART Conference 2014, 1(1):724–731.
Schaefers, L. and Platzner, M. (2014). Distributed Monte-
Carlo Tree Search : A Novel Technique and its Appli-
cation to Computer Go. IEEE Transactions on Com-
putational Intelligence and AI in Games, 6(3):1–15.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., et al. (2016).
Mastering the game of go with deep neural networks
and tree search. Nature, 529(7587):484–489.
Yoshizoe, K., Kishimoto, A., Kaneko, T., Yoshimoto, H.,
and Ishikawa, Y. (2011). Scalable Distributed Monte-
Carlo Tree Search. In Fourth Annual Symposium on
Combinatorial Search, pages 180–187.