REFERENCES
Basu, K. (2014). Classifcation techniques for non-
intrusive load monitoring and prediction of residential
loads. Université de Grenoble: PhD Thesis.
Cristaldi, L., Monti, A., & Ponci, F. (2003). Three-phase
Load Signature: a wavelet-based approach to power
analysis. 6th International Workshop on Power
Definitions and Measurements under Non-Sinusoidal
Conditions. Milano.
Didiot, E., Illina, I., Fohr, D., & Mella, O. (2010). A
Wavelet-Based Parameterization for Speech/Music
Discrimination. Computer Speech & Language, 341-
357.
Duarte, C., Delmar, P., Goossen, K. W., Barner, K., &
Gomez-Luna, E. (2012). Non-Intrusive Load
Monitoring Based on Switching Voltage Transients
and Wavelet Transforms. Future of Instrumentation
International Workshop (FIIW). Gatlinburg, USA.
El-Zonkoly, A., & Desouki, H. (2011). Wavelet entropy
based algorithm for fault detection and classification
in FACTS compensated transmission line. Electrical
Power and Energy Systems, 1368-1374.
Figueiredo, M. B., de Almeida, A., & Ribeiro, B. (2011).
Wavelet Decomposition and Singular Spectrum
Analysis for Electrical Signal Denoising. IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), (pp. 3329-3334). Anchorage,
USA.
Gao, J., Giri, S., Kara, E. C., & Bergès, M. (2014).
PLAID: A Public Dataset of High-resoultion Electrical
Appliance Measurements for Load Identification
Research: Demo Abstract. 1st Conference on
Embedded Systems for Energy-Efficient Buildings (pp.
198-199). Memphis, USA: ACM.
Gilis, J. M., Alshareef, S. M., & Morsi, W. (2016).
Nonintrusive Load Monitoring Using Wavelet Design
and Machine Learning. IEEE Transactions On Smart
Grid, 320-328.
Gillis, J. M., & Morsi, W. G. (2017). Non-Intrusive Load
Monitoring Using Semi-Supervised Machine Learning
and Wavelet Design. IEEE Transactions on Smart
Grid, 8.
Gladrene, S. B., Juliet, V., & Jayapriya, K. A. (2015).
Dual Tree Complex Wavelet Cepstral Coefficient–
based Bat Classification in Kalakad Mundanthurai
Tiger Reserve. International Journal of Computer
Science and Information Technologies, 3663-3671.
Gray, M., & Morsi, W. (2015). Application of Wavelet-
Based Classification in Non-Intrusive Load
Monitoring. IEEE 28th Canadian Conference on
Electrical and Computer Engineering, (pp. 41-45).
Halifax, Canada.
Hacine-Gharbi, A., Petit, M., Ravier, P., & Nemo, F.
(2015). Prosody Based Automatic Classification of the
Uses of French ‘oui’ as Convinced or Unconvinced
Uses. 4th International Conference on Pattern
Recognition Applications and Methods (ICPRAM).
Lisboa, Portugal.
Jain, A., Duin, R., & Mao, J. (2000, Jan). Statistical
pattern recognition: a review. (IEEE, Ed.) Trans.
Pattern Analysis and Machine Intelligence, 22,(1), 4-
37.
Kohavi, R., & John, G. H. (1997). Wrappers for feature
subset selection. Artificial intelligence, 273-324.
Kong, S., Kim, Y., Ko, R., & Joo, S. (2015). Home
appliance load disaggregation using cepstrum-
smoothing-based method. IEEE Trans. Consumer
Electron., 24-30.
Lei, L., & Kun, S. (2016). Speaker Recognition Using
Wavelet Cepstral Coefficient, I-Vector, and Cosine
Distance Scoring and Its Application for Forensics.
Journal of Electrical and Computer Engineering, 11.
Nait Meziane, M., Hacine-Gharbi, A., Ravier, P.,
Lamarque, G., Le Bunetel, J.-C., & Raingeaud, Y.
(2017). Electrical Appliances Identification and
Clustering using Novel Turn-on Transient Features.
6th International Conference on Pattern Recognition
Applications and Methods (ICPRAM), (pp. 647-652).
Porto, Portugal.
Naït Meziane, M., Ravier, P., Lamarque, G., Abed-
Meraim, K., Le Bunetel, J.-C., & Raingeaud, Y.
(2015). Modeling and estimation of transient current
signals. Signal Processing Conference (EUSIPCO),,
(pp. 2005-2009). Nice, France.
Nait-Meziane, M., Hacine-Gharbi, A., Ravier, P.,
Lamarque, G., Le Bunetel, J.-C., & Raingeaud, Y.
(2016). Electrical Appliances Identification using
HMM to Model Transient and Steady-state Current
Signals. 4th International Conference on Pattern
Recognition Applications and Methods (ICPRAM).
Rome, Italy.
Su, Y.-C., Lian, K.-L., & Chang, H.-H. (2011). Feature
Selection of Non-intrusive Load Monitoring System
using STFT and Wavelet Transform. 8th IEEE
International Conference on e-Business Engineering,
(pp. 293-298).
Tabatabaei, S. M., Dick, S., & Xu, W. (2017). Toward
Non-Intrusive Load Monitoring via Multi-Label
Classification. IEEE Transactions on Smart Grid, 26-
40.
Young, S., Kershaw, D., Odell, J., & Ollason, D. (1999).
The HTK Book. Cambridge: Entropic Ltd.
Wavelet Cepstral Coefficients for Electrical Appliances Identification using Hidden Markov Models
549