ACKNOWLEDGEMENTS
This work has received funding from the European
Community’s Eighth Framework Program
(Horizon2020) under grant agreement no. 634149
for the PROSPECT project and funding from the
German Federal Ministry for Economic Affairs and
Energy for the iFUSE project. The PROSPECT and
iFUSE consortium members express their gratitude
for selecting and supporting these two projects.
REFERENCES
Andrew, B. and Isard, M., (1998). Active Contours: The
Application of Techniques from Graphics, Vision
Control Theory and Statistics to Visual Tracking of
Shapes in Motion. 1st ed. London: Springer.
Badino, H., Franke, U. and Mester, R., (2007). Free Space
Computation Using Stochastic Occupancy Grids and
Dynamic Programming. In International Conference
on Computer Vision (ICCV), Workshop on Dynamical
Vision, Rio de Janeiro.
Badino, H., Mester, R., Vaudrey, T., Franke, U. and
Daimler AG, (2008). Stereo-based Free Space
Computation in Complex Traffic Scenarios. In IEEE
Southwest Symposium on Image Analysis and
Interpretation (SSIAI), Santa Fe, pp. 189-192.
Clarke, B., Worrall, S., Brooker, G. and Nebot, E., (2012).
Sensor Modelling for Radar-Based Occupancy
Mapping. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vilamoura, pp.
3047-3054.
Degerman, J., Pernstål, T. and Alenljung, K., (2016). 3D
Occupancy Grid Mapping Using Statistical Radar
Models. In IEEE Intelligent Vehicles Symposium (IV),
Gothenburg, pp. 902-908.
Elfes, A., (1989). Using Occupancy Grids for Mobile
Robot Perception and Navigation. In Computer, vol.
22, no. 6, pp. 46-57.
Ester, M., Kriegel, H. P., Sander, J. and Xu, X., (1996). A
Density-Based Algorithm for Discovering Clusters in
Large Spatial Databases with Noise. In Proceedings of
the Second International Conference on Knowledge
Discovery and Data Mining, Portland, pp. 226-331.
Gonzalez, R. C., Woods, R. E. and Eddins, S. L., (2004).
Digital Image Processing Using MATLAB, Lexington:
Pearson Prentice Hall.
He, L., Chao, Y. and Suzuki, K., (2008). A Run-Based
Two-Scan Labeling Algorithm. IEEE Transactions on
Image Processing, 17(5), pp. 749-756.
Homm, F., Kaempchen, N., Ota, J. and Burschka, D.,
(2010). Efficient Occupancy Grid Computation on the
GPU with LiDAR and Radar for Road Boundary
Detection. In IEEE Intelligent Vehicles Symposium
(IV), San Diego, pp. 1006-1013.
Konrad, M., Szczot, M. and Dietmayer, K., (2010). Road
Course Estimation in Occupancy Grids. In IEEE
Intelligent Vehicles Symposium (IV), San Diego, pp.
412-417.
Li, M., (2017). High-Resolution Radar Based
Environment Perception and Maneuver Planning. In
CTI Symposium on Automated Driving, Future
Mobility and Digitalization (ADFD), Hannover.
Lloyd, S., (1982). Least Squares Quantization in PCM.
IEEE Transactions on Information Theory, 28(2), pp.
129-137.
Lombacher, J., Laudt, K., Hahn, M., Dickmann, J. and
Wöhler, C., (2017). Semantic Radar Grids. In IEEE
Intelligent Vehicles Symposium (IV), Los Angeles, pp.
1170-1175.
Lundquist, C., Schön, T. B. and Orguner, U., (2009).
Estimation of the Free Space in Front of a Moving
Vehicle. In SAE World Congress & Exhibition,
Detroit.
Meinl, F., Stolz, M., Kunert, M. and Blume, H., (2017).
An Experimental High Performance Radar System for
Highly Automated Driving. In IEEE MTT-S
International Conference on Microwaves for
Intelligent Mobility (ICMIM), Nagoya, pp. 71-74.
Moravec, H. and Elfes, A., (1985). High Resolution Maps
from Wide Angle Sonar. In Proceedings of IEEE
International Conference on Robotics and
Automation, St. Louis, pp. 116-121.
Mouhagir, H., Cherfaoui, V., Talj, R., Aioun, F. and
Guillemard, F., (2017). Using Evidential Occupancy
Grid for Vehicle Trajectory Planning Under
Uncertainty with Tentacles. In IEEE 20th
International Conference on Intelligent
Transportation Systems (ITSC), Yokohama.
Nuss, D. (2017). A Random Finite Set Approach for
Dynamic Occupancy Grid Maps. PhD. University of
Ulm.
Rosenfeld, A. and Pfaltz, J. L., (1999). Sequential
Operations in Digital Picture Processing. Journal of
the ACM, 13(4), pp. 471-494.
Schreier, M., Willert, V. and Adamy, J., (2016). Compact
Representation of Dynamic Driving Environments for
ADAS by Parametric Free Space and Dynamic Object
Maps. IEEE Transactions on Intelligent
Transportation Systems, 17(2), pp. 367-384.
Stellet, J. E., Straub, F., Schumacher, J., Branz, W. and
Zöllner, J. M., (2015). Estimating the Process Noise
Variance for Vehicle Motion Models. In IEEE 18th
International Conference on Intelligent
Transportation Systems (ITSC), Las Palmas, pp. 1512-
1519.
Weiss, T., Schiele, B. and Dietmayer, K., (2007). Robust
Driving Path Detection in Urban and Highway
Scenarios Using a Laser Scanner and Online
Occupancy Grids. In IEEE Intelligent Vehicles
Symposium (IV), Istanbul, pp. 184-189.
Werber, K., Rapp, M., Klappstein, J., Hahn, M.,
Dickmann, J., Dietmayer, K. and Waldschmidt, C.,
(2015). Automotive Radar Gridmap Representations.
In IEEE MTT-S International Conference on
Microwaves for Intelligent Mobility (ICMIM),
Heidelberg, pp. 1-4.