REFERENCES
Byrne, J., Caulfield, S., Xu, X., Pena, D., Baugh, G., and
Moloney, D. (2017). Applications of the VOLA For-
mat for 3D Data Knowledge Discovery . In Inter-
national Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery, pages 1–8.
Carlberg, M., Gao, P., Chen, G., and Zakhor, A. (2009).
Classifying urban landscape in aerial lidar using 3D
shape analysis. In Proceedings - International Con-
ference on Image Processing, ICIP, pages 1701–1704.
IEEE.
Chen, G. and Zakhor, A. (2009). 2D tree detection in large
urban landscapes using aerial LiDAR data. In Im-
age Processing (ICIP), 2009 16th IEEE International
Conference on, pages 1693–1696. IEEE.
Chen, Z., Gao, B., and Devereux, B. (2017). State-of-the-
Art: DTM Generation Using Airborne LIDAR Data.
Sensors, 17(1):150.
Ferraz, A., Saatchi, S., Mallet, C., and Meyer, V. (2016). Li-
dar detection of individual tree size in tropical forests.
Remote Sensing of Environment, 183:318–333.
Geosystems, L. (2015). Leica scanstation p30/p40. Techni-
cal report, Heerbrugg, Switzerland.
Golovinskiy, A., Kim, V. G., and Funkhouser, T. (2009).
Shape-based recognition of 3D point clouds in urban
environments. In 2009 IEEE 12th International Con-
ference on Computer Vision, pages 2154–2161. IEEE.
Goutte, C. and Gaussier, E. (2005). A Probabilistic Inter-
pretation of Precision, Recall and F-Score, with Im-
plication for Evaluation. In European Conference on
Information Retrieval, pages 345–359.
H
¨
ofle, B., Hollaus, M., and Hagenauer, J. (2012). Urban
vegetation detection using radiometrically calibrated
small-footprint full-waveform airborne LiDAR data.
ISPRS Journal of Photogrammetry and Remote Sens-
ing, 67(1):134–147.
Hyyppa, J., Kelle, O., Lehikoinen, M., and Inkinen, M.
(2001). A segmentation-based method to retrieve stem
volume estimates from 3-D tree height models pro-
duced by laser scanners. IEEE Transactions on Geo-
science and Remote Sensing, 39(5):969–975.
Jaboyedoff, M., Oppikofer, T., Abell
´
an, A., Derron, M.-H.,
Loye, A., Metzger, R., and Pedrazzini, A. (2012). Use
of LIDAR in landslide investigations: a review. Natu-
ral Hazards, 61(1):5–28.
Jochem, A., H
¨
ofle, B., Hollausb, M., and Rutzingerc, M.
(2009). Object detection in airborne LIDAR data for
improved solar radiation modeling in urban areas. In
Laser scanning, volume 38, pages 1–6. International
Society for Photogrammetry and Remote Sensing (IS-
PRS).
Koch, B., Heyder, U., and Weinacker, H. (2006). De-
tection of Individual Tree Crowns in Airborne Lidar
Data. Photogrammetric Engineering & Remote Sens-
ing, 72(4):357–363.
Laefer, D. F., Abuwarda, S., Vo, A.-V., Truong-Hong,
L., and Gharibi, H. (2015). 2015 Aerial Laser and
Photogrammetry Survey of Dublin City Collection
Record.
Li, W., Guo, Q., Jakubowski, M. K., and Kelly, M. (2012).
A New Method for Segmenting Individual Trees from
the Lidar Point Cloud. Photogrammetric Engineering
& Remote Sensing, 78(1):75–84.
Liu, J., Shen, J., Zhao, R., and Xu, S. (2013). Extraction
of individual tree crowns from airborne LiDAR data
in human settlements. Mathematical and Computer
Modelling, 58(3-4):524–535.
Lu, X., Guo, Q., Li, W., and Flanagan, J. (2014). A bottom-
up approach to segment individual deciduous trees us-
ing leaf-off lidar point cloud data. ISPRS Journal of
Photogrammetry and Remote Sensing, 94:1–12.
Mongus, D. and Zalik, B. (2015). An efficient approach to
3D single tree-crown delineation in LiDAR data. IS-
PRS Journal of Photogrammetry and Remote Sensing,
108:219–233.
Ningal, T. (2012). PhD Thesis. PhD thesis, UCD School of
Geography.
Reitberger, J., Krzystek, P., Stilla, U., and Sensing, R.
(2009). Benefit of airborne full waveform lidar for
3D segmentation and classification of single trees.
Schwarz, B. (2010). Lidar: Mapping the world in 3D. Na-
ture Photonics, 4(7):429–430.
Secord, J. and Zakhor, A. (2007). Tree Detection in Urban
Regions Using Aerial LiDAR and Image Data. IEEE
Geoscience and Remote Sensing Letters, 4(2):196–
200.
Shendryk, I., Broich, M., Tulbure, M. G., and Alexan-
drov, S. V. (2016a). Bottom-up delineation of individ-
ual trees from full-waveform airborne laser scans in a
structurally complex eucalypt forest. Remote Sensing
of Environment, 173:69–83.
Shendryk, I., Broich, M., Tulbure, M. G., McGrath, A.,
Keith, D., and Alexandrov, S. V. (2016b). Mapping in-
dividual tree health using full-waveform airborne laser
scans and imaging spectroscopy: A case study for a
floodplain eucalypt forest. Remote Sensing of Envi-
ronment, 187:202–217.
Smits, I., Prieditis, G., Dagis, S., and Dubrovskis, D.
(2012). Individual tree identification using different
LIDAR and optical imagery data processing methods.
Biosystems and Information Technology, 1(1):19–24.
Treepedia (2015). MIT Senseable City Lab.
Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., Huang, Y.,
Wu, J., and Liu, H. (2013). A Voxel-Based Method for
Automated Identification and Morphological Parame-
ters Estimation of Individual Street Trees from Mobile
Laser Scanning Data. Remote Sensing, 5(2):584–611.
Zhang, C., Zhou, Y., and Qiu, F. (2015). Individual Tree
Segmentation from LiDAR Point Clouds for Urban
Forest Inventory. Remote Sens, 7:7892–7913.
Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J.,
and Zhang, C. (2003). A progressive morphological
filter for removing nonground measurements from air-
borne LIDAR data. IEEE Transactions on Geoscience
and Remote Sensing, 41(4 PART I):872–882.
Automatic Tree Annotation in LiDAR Data
41