databases. In Data Engineering, 2001. Proc. 17th Int.
Conference on, pages 443–452. IEEE.
Carlson, A., Betteridge, J., Hruschka Jr, E. R., and Mitchell,
T. M. (2009). Coupling semi-supervised learning of
categories and relations. In Proceedings of the NAACL
HLT 2009 Workshop on Semi-supervised Learning for
Natural Language Processing, pages 1–9. Association
for Computational Linguistics.
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka,
E. R., and Mitchell, T. M. (2010a). Toward an ar-
chitecture for never-ending language learning. In In
AAAI.
Carlson, A., Betteridge, J., Wang, R. C., Hruschka Jr,
E. R., and Mitchell, T. M. (2010b). Coupled semi-
supervised learning for information extraction. In Pro-
ceedings of the third ACM international conference on
Web search and data mining, pages 101–110. ACM.
Djenouri, Y., Drias, H., and Bendjoudi, A. (2014). Pru-
ning irrelevant association rules using knowledge mi-
ning. International Journal of Business Intelligence
and Data Mining, 9(2):112–144.
Etzioni, O., Fader, A., Christensen, J., Soderland, S., et al.
(2011). Open information extraction: The second ge-
neration. In 22th Int. Joint Conf. on Artif. Intelligence.
Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A.,
Wu, C.-W., Tseng, V. S., et al. (2014). Spmf: a java
open-source pattern mining library. Journal of Ma-
chine Learning Research, 15(1):3389–3393.
Gal
´
Arraga, L. A., Teflioudi, C., Hose, K., and Suchanek,
F. (2013). Amie: Association rule mining under in-
complete evidence in ontological knowledge bases. In
Proc. of the 22Nd Int. Conf. on World Wide Web, pages
413–422, Republic and Canton of Geneva, Switzer-
land. Int. World Wide Web Conf. Steering Committee.
Gouda, K. and Zaki, M. J. (2005). Genmax: An efficient
algorithm for mining maximal frequent itemsets. Data
Min. Knowl. Discov., 11(3):223–242.
Grahne, G. and Zhu, J. (2003). High performance mining
of maximal frequent itemsets. In 6th International
Workshop on High Performance Data Mining.
Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns
without candidate generation. In ACM sigmod record,
volume 29, pages 1–12. ACM.
Hoffart, J., Suchanek, F. M., Berberich, K., and Weikum,
G. (2013). Yago2: A spatially and temporally en-
hanced knowledge base from wikipedia (extended ab-
stract). In Proceedings of the Twenty-Third Internatio-
nal Joint Conference on Artificial Intelligence, IJCAI
’13, pages 3161–3165. AAAI Press.
Marinica, C. and Guillet, F. (2010). Knowledge-based in-
teractive postmining of association rules using onto-
logies. IEEE Transactions on Knowledge and Data
Engineering, 22(6):784–797.
Matuszek, C., Cabral, J., Witbrock, M., and Deoliveira, J.
(2006). An introduction to the syntax and content of
cyc. In Proceedings of the 2006 AAAI Spring Sympo-
sium on Formalizing and Compiling Background Kno-
wledge and Its Applications to Knowledge Represen-
tation and Question Answering, pages 44–49.
Miani, R. G., Yaguinuma, C. A., Santos, M. T., and Biajiz,
M. (2009). Narfo algorithm: Mining non-redundant
and generalized association rules based on fuzzy on-
tologies. In Enterprise Inf. Systems, pages 415–426.
Springer.
Miani, R. G. L., Pedro, S. D. d. S., and Hruschla Jr, E. R.
(2014). Association rules to help populating a never-
ending growing knowledge base. In IBERAMIA 2014,
pages 169–181. Springer.
Mitchell, T. M., Cohen, W., Hruschka, E., Talukdar, P., Bet-
teridge, J., Carlson, A., Mishra, B. D., Gardner, M.,
Kisiel, B., Krishnamurthy, J., et al. (2015). Never-
ending learning. In 29th AAAI Conf. on Artificial In-
telligence.
Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999).
Discovering frequent closed itemsets for association
rules. In Proceedings of the 7th International Confe-
rence on Database Theory, ICDT ’99, pages 398–416,
London, UK, UK. Springer-Verlag.
Pedro, S. D. and Hruschka Jr, E. R. (2012). Conver-
sing learning: Active learning and active social in-
teraction for human supervision in never-ending lear-
ning systems. In Advances in Artificial Intelligence–
IBERAMIA 2012, pages 231–240. Springer.
Rai, N. S., Jain, S., and Jain, A. (2014). Mining interesting
positive and negative association rule based on impro-
ved genetic algorithm (mipnar
ga). In. Journal of Ad-
vanced Computer Science and Applications, 5(1).
Rameshkumar, K., Sambath, M., and Ravi, S. (2013). Re-
levant association rule mining from medical dataset
using new irrelevant rule elimination technique. In
Information Communication and Embedded Systems
(ICICES), 2013 Int. Conf. on, pages 300–304. IEEE.
Srikant, R. and Agrawal, R. (1995). Mining generalized as-
sociation rules. In Proceedings of the 21th Int. Conf.
on Very Large Data Bases, VLDB ’95, pages 407–
419, San Francisco, CA, USA. Morgan Kaufmann Pu-
blishers Inc.
Suchanek, F. M., Kasneci, G., and Weikum, G. (2007).
Yago: A core of semantic knowledge. In Proc. of the
16th Int. Conf. on World Wide Web, WWW ’07, pages
697–706, New York, NY, USA. ACM.
Swesi, I. M. A. O., Bakar, A. A., and Kadir, A. S. A. (2012).
Mining positive and negative association rules from
interesting frequent and infrequent itemsets. In Fuzzy
Systems and Knowledge Discovery (FSKD), 2012 9th
International Conference on, pages 650–655. IEEE.
Tamang, S. and Ji, H. (2012). Relabeling distantly supervi-
sed training data for temporal knowledge base popu-
lation. In Proceedings of the Joint Workshop on Au-
tomatic Knowledge Base Construction and Web-scale
Knowledge Extraction, pages 25–30. Association for
Computational Linguistics.
Zaki, M. J. (2000). Generating non-redundant association
rules. In Proc. of the 6th ACM SIGKDD Int. Con-
ference on Knowledge Discovery and Data Mining,
KDD ’00, pages 34–43, New York, NY, USA. ACM.
Zaki, M. J. and Hsiao, C.-J. (2002). Charm: An efficient
algorithm for closed itemset mining. In Proc. of the
2002 SIAM int. conf. on data mining, pages 457–473.
SIAM.
ICEIS 2018 - 20th International Conference on Enterprise Information Systems
28