REFERENCES
Amirian, P., Basiri, A., & Morley, J. (2016). Predictive
Analytics for Enhancing Travel Time Estimation in
Navigation Apps of Apple, Google, and Microsoft. In:
IWCTS ’16, Proceedings of the 9th ACM SIGSPATIAL
International Workshop on Computational
Transportation Science (pp. 31–36). New York, NY,
USA: ACM. https://doi.org/10.1145/3003965.3003976
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly
detection: A survey. ACM Comput. Surv., 41(3), 1–58.
https://doi.org/10.1145/1541880.1541882
Chowdhury, S., & Akram, A. (2011). E-Maintenance:
Opportunities and Challenges. In: TUCS Lecture Notes,
Proceedings of IRIS 2011 (pp. 68–81). Turku Centre for
Computer Science.
Gartner, I. (2017a). Predictive Analytics: IT Glossary.
Retrieved from http://www.gartner.com/it-glossary/
predictive-analytics/
Gartner, I. (2017b). Predictive Modeling: IT Glossary.
Retrieved from http://www.gartner.com/it-glossary/
predictive-modeling
Haarman, M., Mulders, M., & Vassiliadis, C. (2017).
Predictive Maintenance 4.0: Predict the unpredictable.
Retrieved from https://www.pwc.nl/en/publicaties/
predictive-maintenance-40-predict-the-
unpredictable.html
Han, J., & Kamber, M. (2008). Data mining. concepts and
techniques. Amsterdam, Heidelberg [u.a.]: Elsevier,
Morgan Kaufmann.
Hashemi, M., & Herbert, J. (2016). A Pro-active and
Dynamic Prediction Assistance Using BaranC
Framework. In: MOBILESoft ’16, Proceedings of the
International Conference on Mobile Software
Engineering and Systems (pp. 269–270). New York,
NY, USA: ACM. https://doi.org/10.1145/
2897073.2897759
Hashemian, H. M., & Bean, W. C. (2011). State-of-the-Art
Predictive Maintenance Techniques IEEE
Transactions on Instrumentation and Measurement,
60(10), 3480–3492. https://doi.org/10.1109/
TIM.2009.2036347
Lee, T., & Tso, M. (Eds.) 2016. A universal sensor data
platform modelled for realtime asset condition
surveillance and big data analytics for railway systems:
Developing a “Smart Railway” mastermind for the
betterment of reliability, availability, maintainbility
and safety of railway systems and passenger service.
2016 IEEE SENSORS.
Microsoft Corporation. (2017). Übersicht über die
vorkonfigurierte Lösung für vorhersagbaren
Wartungsbedarf. Retrieved from https://docs.
microsoft.com/de-de/azure/iot-suite/iot-suite-
predictive-overview
Mobley, R. K. (2002). An introduction to predictive
maintenance (2. ed.). Plant engineering. Amsterdam
u.a.: Butterworth-Heinemann.
Nichenametla, A. N., Nandipati, S., & Waghmare, A. L.
(Eds.) 2017. Optimizing life cycle cost of wind turbine
blades using predictive analytics in effective
maintenance planning. 2017 Annual Reliability and
Maintainability Symposium (RAMS).
Olson, D. L., & Wu, D. (2017). Predictive Data Mining
Models. Computational Risk Management. Singapore,
s.l.: Springer Singapore. Retrieved from
http://dx.doi.org/10.1007/978-981-10-2543-3
OnPage.org GmbH. (2017). Predictive Modelling.
Retrieved from https://de.onpage.org/wiki/
Predictive_Modelling
Osladil, M., & Kozubík, L. (Eds.) 2015. Smart Asset
Management in view of recent analytical technologies.
2015 16th International Scientific Conference on
Electric Power Engineering (EPE).
Palacios, L., Lortal, G., Laudy, C., Sannino, C., Simon, L.,
Fusco, G., Reynaud, C. (2016). Avionics Maintenance
Ontology Building for Failure Diagnosis Support. In:
IC3K 2016, Proceedings of the International Joint
Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management - Volume 1
(pp. 204–209). Portugal: SCITEPRESS - Science and
Technology Publications, Lda.
https://doi.org/10.5220/0006092002040209
Rault, A., & Baskiotis, C. (Eds.) 1986. Fault detection -
Diagnosis and predictive maintenance. 1986 25th IEEE
Conference on Decision and Control.
Rio, R. (2017). IIoT Expands the Maintenance Maturity
Model. Retrieved from https://industrial-
iot.com/2017/02/iiot-expands-the-maintenance-
maturity-model/
Sahoo, P. K., Mohapatra, S. K., & Wu, S. L. (2016).
Analyzing Healthcare Big Data With Prediction for
Future Health Condition. IEEE Access, 4, 9786–9799.
https://doi.org/10.1109/ACCESS.2016.2647619
Sipos, R., Fradkin, D., Moerchen, F., & Wang, Z. (2014).
Log-based Predictive Maintenance. In: KDD ’14,
Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(pp. 1867–1876). New York, NY, USA: ACM.
https://doi.org/10.1145/2623330.2623340
Stockinger, K., & Stadelmann, T. (2014). Data Science für
Lehre, Forschung und Praxis. HMD - Praxis
Wirtschaftsinform, 51(4), 469–479. https://doi.org/
10.1365/s40702-014-0040-1
TNS Infratest, M. (2016). Big Data: Wann Menschen bereit
sind, ihre Daten zu teilen. Eine europäische Studie.
Yang, J., & Anwar, A. M. (Eds.) 2016. Social Media
Analysis on Evaluating Organisational Performance a
Railway Service Management Context. 2016 IEEE 14th
Intl Conf on Dependable, Autonomic and Secure
Computing, 14th Intl Conf on Pervasive Intelligence
and Computing, 2nd Intl Conf on Big Data Intelligence
and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech).
Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., &
Moscibroda, T. (2016). Mobility Modeling and
Prediction in Bike-Sharing Systems. In : MobiSys ’16,
Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and
Services (pp. 165–178). New York, NY, USA: ACM.
https://doi.org/10.1145/2906388.2906408
Zhang, C., Dong, M., Ota, K., & Guo, M. (2016). A Social-
Network-Optimized Taxi-Sharing Service. IT
Professional, 18(4), 34–40. https://doi.org/10.1109/
MITP.2016.71