evaluated in order to implement improvements for the
scientist. For this purpose, we intend to advance expe-
rimental studies, evaluating the operation of this plat-
form integrated to third-parties’ scientific software
ecosystem platform. Furthermore, extensions to other
SWfMS databases that have proprietary provenance
models also need to be addressed. Results show that
the context elements and provenance data could be
used to support the reuse of scientific experiments in
a collaborative and distributed environment, but they
cannot be generalized. Experiments need to be car-
ried out considering the real-world contexts the de-
sign decisions of scientists and developers. In the fu-
ture works, we intend to carry out a formal evaluation
of ContextProv architecture through a Case Study at
an Agricultural Research Corporation that conducts
experiments related to feed efficiency in dairy cattle.
REFERENCES
Ambr
´
osio, L. M., David, J. M. N., Braga, R., Str
¨
oele, V.,
Campos, F., and Ara
´
ujo, M. A. (2017). Prov-se-o: a
provenance ontology to support scientists in scientific
experimentation process: Wip. In Proceedings of the
12th International Workshop on Software Engineering
for Science, pages 15–21. IEEE Press.
Ambr
´
osio, L. M., David, J. M. N., Braga, R., Str
¨
oele, V.,
Campos, F., and Ara
´
ujo, M. A. (2017). Context-SE:
Conceptual framework to analyse context and prove-
nance in scientific experiments. In 14th Brazilian
Symposium in Collaborative Systems, pages 1372–
1386. CSBC.
Bolchini, C., Curino, C. A., Quintarelli, E., Schreiber, F. A.,
and Tanca, L. (2007). A data-oriented survey of con-
text models. ACM Sigmod Record, pages 19–26.
Br
´
ezillon, P. (2011). Contextualization of scientific work-
flows. In International and Interdisciplinary Confe-
rence on Modeling and Using Context, pages 40–53.
Springer.
Br
´
ezillon, P., Borges, M. R., Pino, J. A., and Pomerol, J.-C.
(2004). Context-based awareness in group work. In
FLAIRS Conference, pages 575–580.
Costa, F., de Oliveira, D., and Mattoso, M. (2014). Towards
an adaptive and distributed architecture for managing
workflow provenance data. In Proceedings of the 2014
IEEE 10th International Conference on e-Science, pa-
ges 79–82.
Cuevas-Vicentt
´
ın, V., Kianmajd, P., Lud
¨
ascher, B., Missier,
P., Chirigati, F., Wei, Y., Koop, D., and Dey, S. (2014).
The PBase scientific workflow provenance repository.
International Journal of Digital Curation, pages 28–
38.
Federer, L. M., Lu, Y.-L., Joubert, D. J., Welsh, J., and
Brandys, B. (2015). Biomedical data sharing and
reuse: Attitudes and practices of clinical and scientific
research staff. PLOS ONE, 10(6):1–17.
Freitas, V., David, J. M., Braga, R., and Campos, F. (2015).
An architecture for scientific software ecosystem. In
9th Workshop on Distributed Software Development,
Software Ecosystems and Systems-of-Systems (WDES
2015), pages 41–48. (in portuguese).
Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S.,
Grosof, B., Dean, M., et al. (2004). Swrl: A semantic
web rule language combining owl and ruleml. W3C
Member submission, page 79.
Lim, C., Lu, S., Chebotko, A., and Fotouhi, F. (2010).
Prospective and retrospective provenance collection in
scientific workflow environments. In Services Compu-
ting (SCC), 2010 IEEE International Conference on,
pages 449–456.
Manikas, K. (2016). Revisiting software ecosystems rese-
arch: A longitudinal literature study. Journal of Sys-
tems and Software, 117:84–103.
Mayer, R., Miksa, T., and Rauber, A. (2014). Ontologies for
describing the context of scientific experiment proces-
ses. In e-Science, 2014 IEEE 10th International Con-
ference on, pages 153–160. IEEE.
Missier, P. (2016). The Lifecycle of Provenance Metadata
and Its Associated Challenges and Opportunities, pa-
ges 127–137. Springer International Publishing.
Missier, P., Lud
¨
ascher, B., Bowers, S., Dey, S., Sarkar, A.,
Shrestha, B., Altintas, I., Anand, M. K., and Goble, C.
(2010). Linking multiple workflow provenance traces
for interoperable collaborative science. In Workflows
in Support of Large-Scale Science (WORKS), 2010 5th
Workshop on, pages 1–8.
Oliveira, W., Ambr
´
osio, L. M., Braga, R., Str
¨
oele, V., Da-
vid, J. M., and Campos, F. (2017). A framework for
provenance analysis and visualization. Procedia Com-
puter Science, 108(Supplement C):1592 – 1601. Inter-
national Conference on Computational Science, ICCS
2017, 12-14 June 2017, Zurich, Switzerland.
Rittenbruch, M. (2002). Atmosphere: a framework for con-
textual awareness. International Journal of Human-
Computer Interaction, pages 159–180.
Rosa, M. G., Borges, M. R., and Santoro, F. M. (2003). A
conceptual framework for analyzing the use of context
in groupware. In International Conference on Colla-
boration and Technology, pages 300–313. Springer.
Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A survey
of data provenance in e-science. ACM Sigmod Record,
pages 31–36.
Sirqueira, T. F., Dalpra, H. L., Braga, R., Ara
´
ujo, M. A.,
David, J. M. N., and Campos, F. (2016). E-SECO
proversion: Manutenc¸
˜
ao e evoluc¸
˜
ao de experimentos
cient
´
ıficos. In BreSci - 10
o
Brazilian e-Science Works-
hop, pages 253–260. CSBC.
ICEIS 2018 - 20th International Conference on Enterprise Information Systems
262