time conditions as well as an additional integration
of all MP-Declare constraints. Furthermore, we will
examine how to improve performance even more,
for instance with alternative MapReduce frameworks
which can be set up and tested with the proposed al-
gorithms.
REFERENCES
Bose, J. C., Maggi, F. M., and van der Aalst, W. (2013). En-
hancing Declare Maps Based on Event Correlations.
In Business Process Management, pages 97–112.
Burattin, A., Maggi, F. M., and Sperduti, A. (2015). Con-
formance checking based on multi-perspective decla-
rative process models. CoRR, abs/1503.04957.
Burattin, A., Maggi, F. M., van der Aalst, W. M., and Sper-
duti, A. (2012). Techniques for a Posteriori Analy-
sis of Declarative Processes. In EDOC, pages 41–50,
Beijing. IEEE.
de Leoni, M., van der Aalst, W. M. P., and Dees, M. (2016).
A general process mining framework for correlating,
predicting and clustering dynamic behavior based on
event logs. Inf. Syst., 56:235–257.
Di Ciccio, C., Maggi, F. M., Montali, M., and Mendling,
J. (2015a). Ensuring model consistency in declarative
process discovery. In BPM, volume 9253 of Lecture
Notes in Computer Science, pages 144–159. Springer.
Di Ciccio, C. and Mecella, M. (2013). A two-step fast algo-
rithm for the automated discovery of declarative work-
flows. In CIDM, pages 135–142. IEEE.
Di Ciccio, C. and Mecella, M. (2015). On the discovery
of declarative control flows for artful processes. ACM
TMIS, 5(4):1–37.
Di Ciccio, C., Schouten, M. H. M., de Leoni, M., and Mend-
ling, J. (2015b). Declarative process discovery with
MINERful in ProM. In BPM Demos, pages 60–64.
Maggi, F., Bose, R., and van der Aalst, W. (2013a). A
knowledge-based integrated approach for discovering
and repairing declare maps. In CAiSE.
Maggi, F. M. (2013). Declarative process mining with the
declare component of prom. In BPM Demo sessions
2013, 26-30, 2013.
Maggi, F. M. (2014). Discovering metric temporal busi-
ness constraints from event logs. In BIR, volume 194
of Lecture Notes in Business Information Processing,
pages 261–275. Springer.
Maggi, F. M., Dumas, M., Garc
´
ıa-Ba
˜
nuelos, L., and Mon-
tali, M. (2013b). Discovering data-aware declarative
process models from event logs. In BPM, pages 81–
96.
Maggi, F. M., Mooij, A., and van der Aalst, W. (2011).
User-Guided Discovery of Declarative Process Mo-
dels. In CIDM, pages 192–199.
Montali, M., Chesani, F., Mello, P., and Maggi, F. M.
(2013). Towards data-aware constraints in declare. In
SAC, pages 1391–1396. ACM.
Montali, M., Pesic, M., van der Aalst, W. M. P., Chesani,
F., Mello, P., and Storari, S. (2010). Declarative Spe-
cification and Verification of Service Choreographies.
ACM Transactions on the Web, 4(1).
Pesic, M., Schonenberg, H., and van der Aalst, W. M. P.
(2007). Declare: Full support for loosely-structured
processes. In IEEE International EDOC Conference
2007, pages 287–300.
Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling,
J., and Reijers, H. A. (2011). Imperative versus de-
clarative process modeling languages: An empirical
investigation. In BPM Workshops, pages 383–394.
R
¨
aim, M., Di Ciccio, C., Maggi, F. M., Mecella, M.,
and Mendling, J. (2014). Log-based understanding
of business processes through temporal logic query
checking. In OTM Conferences, volume 8841, pages
75–92. Springer.
Sch
¨
onig, S., Cabanillas, C., Jablonski, S., and Mendling, J.
(2016). A Framework for Efficiently Mining the Or-
ganisational Perspective of Business Processes. Deci-
sion Support Systems.
Sch
¨
onig, S., Di Ciccio, C., Maggi, F. M., and Mendling,
J. (2016). Discovery of multi-perspective declara-
tive process models. In Service-Oriented Computing,
ICSOC, Banff, Canada, pages 87–103.
Sturm, C., Sch
¨
onig, S. S., and Ciccio, C. D. (2017). Dis-
tributed multi-perspective declare discovery. In BPM
Demos.
van der Aalst, W. (2011). Process Mining: Discovery,
Conformance and Enhancement of Business Proces-
ses. Springer.
Westergaard, M. and Maggi, F. M. (2012). Looking into the
future: Using timed automata to provide a priori ad-
vice about timed declarative process models. In OTM,
volume 7565 of LNCS, pages 250–267. Springer.
Westergaard, M., Stahl, C., and Reijers, H. (2013). Un-
constrainedMiner: Efficient Discovery of Generalized
Declarative Process Models. BPM CR, No. BPM-13-
28.
Zeising, M., Sch
¨
onig, S., and Jablonski, S. (2014). Towards
a Common Platform for the Support of Routine and
Agile Business Processes. In Collaborative Compu-
ting: Networking, Applications and Worksharing.
A MapReduce Approach for Mining Multi-Perspective Declarative Process Models
595