the reported results are a preliminary work on this ap-
proach, the results are very encouraging. Therefore,
future work will address the study of the parameters
of the Augmented Lagrangian, the use of an achieve-
ment scalarizing function, and the testing of the algo-
rithm in problems with three objectives.
ACKNOWLEDGEMENTS
This work has been supported by the Portuguese
Foundation for Science and Technology (FCT) in the
scope of the project UID/CEC/00319/2013 (ALGO-
RITMI R&D Center).
REFERENCES
Bertsekas, D. P. (1999). Nonlinear Programming. Athena
Scientific, Belmont, 2 edition.
Binh, T. T. and Korn, U. (1997). Mobes: A multiobjective
evolution strategy for constrained optimization prob-
lems. In In Proceedings of the Third International
Conference on Genetic Algorithms, pages 176–182.
Conn, A. R., Gould, N. I. M., and Toint, P. L. (1991).
A globally convergent augmented Lagrangian algo-
rithm for optimization with general constraints and
simple bounds. SIAM Journal on Numerical Analy-
sis, 28(2):545–572.
Costa, L., Santo, I. A. E., and Fernandes, E. M. (2012).
A hybrid genetic pattern search augmented lagrangian
method for constrained global optimization. Applied
Mathematics and Computation, 218(18):9415 – 9426.
Dchert, K., Gorski, J., and Klamroth, K. (2012). An aug-
mented weighted tchebycheff method with adaptively
chosen parameters for discrete bicriteria optimiza-
tion problems. Computers & Operations Research,
39(12):2929 – 2943.
Deb, K. (2001). Multi-Objective Optimization using Evolu-
tionary Algorithms. Wiley-Interscience Series in Sys-
tems and Optimization. John Wiley & Sons.
Fan, Z., Fang, Y., Li, W., Lu, J., Cai, X., and Wei, C.
(2017). A comparative study of constrained multi-
objective evolutionary algorithms on constrained
multi-objective optimization problems. In 2017 IEEE
Congress on Evolutionary Computation (CEC), pages
209–216.
Hooke, R. and Jeeves, T. A. (1961). Direct search solution
of numerical and statistical problems. Journal on As-
sociated Computation, 8:212–229.
Lewis, R. and Torczon, V. (1999). Pattern search algorithms
for bound constrained minimization. SIAM Journal on
Optimization, 9(4):1082–1099.
Lewis, R. M. and Torczon, V. (2002). A globally conver-
gent augmented Lagrangian pattern search algorithm
for optimization with general constraints and simple
bounds. SIAM Journal on Optimization, 12(4):1075–
1089.
Miettinen, K. (1999). Nonlinear multiobjective optimiza-
tion. Kluwer Academic Publishers, Boston.
Osyczka, A. and Kundu, S. (1995). A new method to solve
generalized multicriteria optimization problems using
the simple genetic algorithm. Structural optimization,
10(2):94–99.
Srinivas, N. and Deb, K. (1994). Muiltiobjective opti-
mization using nondominated sorting in genetic algo-
rithms. Evolutionary Computation, 2(3):221–248.
Steuer, R. E. and Choo, E.-U. (1983). An interac-
tive weighted tchebycheff procedure for multiple ob-
jective programming. Mathematical Programming,
26(3):326–344.
Tanaka, M., Watanabe, H., Furukawa, Y., and Tanino, T.
(1995). Ga-based decision support system for mul-
ticriteria optimization. In 1995 IEEE International
Conference on Systems, Man and Cybernetics. Intel-
ligent Systems for the 21st Century, volume 2, pages
1556–1561 vol.2.
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W.,
and Tiwari, S. (2009). Multiobjective optimization
test instances for the CEC 2009 special session and
competition. Technical Report CES-487, University
of Essex, UK.
ICORES 2018 - 7th International Conference on Operations Research and Enterprise Systems
340