the-art. The reported solution shows different con-
tributions with respect to the current literature, in-
cluding the management of the bootstrapping and il-
lumination change issues, the real-time processing,
an original keypoint clustering strategy, and a novel
pipeline based on the neural background subtraction.
REFERENCES
Alcantarilla, P., Nuevo, J., and Bartoli, A. (2013). Fast
explicit diffusion for accelerated features in nonlin-
ear scale spaces. pages 1–12. British Machine Vision
Conference (BMVC).
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J.
(1999). Optics: Ordering points to identify the clus-
tering structure. SIGMOD Record, 28(2):49–60.
Avola, D., Bernardi, M., Cinque, L., Foresti, G. L., and
Massaroni, C. (2017a). Adaptive bootstrapping man-
agement by keypoint clustering for background ini-
tialization. Pattern Recognition Letters, 100:110–116.
Avola, D., Cinque, L., Foresti, G. L., Massaroni, C., and
Pannone, D. (2017b). A keypoint-based method for
background modeling and foreground detection using
a ptz camera. Pattern Recognition Letters, 96:96–105.
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008).
Speeded-up robust features (surf). Computer Vision
and Image Understanding, 110(3):346–359.
Bishop, C. M. (2011). Pattern Recognition and Ma-
chine Learning. Information Science and Statistics.
Springer.
Bouwmans, T. (2014). Traditional and recent approaches
in background modeling for foreground detection: An
overview. Computer Science Review, 11-12:31–66.
Brox, T. and Malik, J. (2010). Object segmentation by long
term analysis of point trajectories. pages 282–295.
European Conference on Computer Vision (ECCV).
Burt, P. J. (1981). Fast filter transform for image processing.
Computer Graphics and Image Processing, 16(1):20–
51.
Cucchiara, R., Grana, C., Piccardi, M., and Prati, A. (2003).
Detecting moving objects, ghosts and shadows in
video streams. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 25(10):1337–1342.
Dragon, R., Ostermann, J., and Gool, L. V. (2013). Robust
realtime motion-split-and-merge for motion segmen-
tation. pages 59–69. German Conference on Pattern
Recognition (GCPR).
Elqursh, A. and Elgammal, A. (2012). Online moving cam-
era background subtraction. pages 228–241. European
Conference on Computer Vision (ECCV).
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., Simoudis,
E., Han, J., and Fayyad, U. (1996). A density-
based algorithm for discovering clusters in large spa-
tial databases with noise. pages 226–231. Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining (KDD).
Ferone, A. and Maddalena, L. (2014). Neural background
subtraction for pan-tilt-zoom cameras. IEEE Trans-
actions on Systems, Man, and Cybernetics: Systems,
44(5):571–579.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Kang, S., Paik, J.-K., Koschan, A., Abidi, B. R., and Abidi,
M. A. (2003). Real-time video tracking using ptz cam-
eras. volume 5132, pages 103–111. International Con-
ference on Quality Control by Artificial Vision.
Kohonen, T. (1982). Self-organized formation of topolog-
ically correct feature maps. Biological Cybernetics,
43(1):59–69.
Kwak, S., Lim, T., Nam, W., Han, B., and Han, J. H. (2011).
Generalized background subtraction based on hybrid
inference by belief propagation and bayesian filtering.
pages 2174–2181. IEEE International Conference on
Computer Vision (ICCV).
Maddalena, L. and Petrosino, A. (2008). A self-organizing
approach to background subtraction for visual surveil-
lance applications. IEEE Transactions on Image Pro-
cessing, 17(7):1168–1177.
Maddalena, L. and Petrosino, A. (2014). The 3dsobs+ algo-
rithm for moving object detection. Computer Vision
and Image Understanding, 122:65–73.
Marquardt and Donald (1963). An algorithm for least-
squares estimation of nonlinear parameters. SIAM
Journal on Applied Mathematics, 11(2):431–441.
Ochs, P. and T.Brox (2011). Object segmentation in video:
a hierarchical variational approach for turning point
trajectories into dense regions. pages 1583–1590.
IEEE International Conference on Computer Vision
(ICCV).
Rafique, A., Sheri, A. M., and Jeon, M. (2014). Back-
ground scene modeling for ptz cameras using rbm.
pages 165–169. International Conference on Control,
Automation and Information Sciences (ICCAIS).
Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.
(2011). Orb: An efficient alternative to sift or surf.
pages 2564–2571. IEEE International Conference on
Computer Vision (ICCV).
Shaikh, S. H., Saeed, K., and Chaki, N. (2014). Mov-
ing Object Detection Using Background Subtraction.
SpringerBriefs in Computer Science. Springer Inter-
national Publishing.
Sheikh, Y., Javed, O., and Kanade, T. (2009). Background
subtraction for freely moving cameras. pages 1219–
1225. IEEE International Conference on Computer
Vision (ICCV).
Sobral, A. and Vacavant, A. (2014). A comprehensive re-
view of background subtraction algorithms evaluated
with synthetic and real videos. Computer Vision and
Image Understanding, 122:4–21.
Tron, R. and Vidal., R. (2007). A benchmark for the com-
parison of 3-d motion segmentation algorithms. pages
1–8. IEEE International Conference on Computer Vi-
sion and Pattern Recognition (CVPR).
Xue, K., Ogunmakin, G., Liu, Y., Vela, P. A., and Wang,
Y. (2011). Ptz camera-based adaptive panoramic and
multi-layered background model. pages 2949–2952.
IEEE International Conference on Image Processing
(ICIP).
Zhou, X., Yang, C., and Yu, W. (2013). Moving object
detection by detecting contiguous outliers in the low-
rank representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(3):597–610.
Combining Keypoint Clustering and Neural Background Subtraction for Real-time Moving Object Detection by PTZ Cameras
645