Freund, Y. (2001). An adaptive version of the boost by ma-
jority algorithm. Machine Learning, 43(3):293–318.
Galgani, F., Hanke, G., Werner, S., and De Vrees, L.
(2013). Marine litter within the european marine strat-
egy framework directive. ICES Journal of Marine Sci-
ence, 70(6):1055–1064.
Girshick, R. (2015). Fast r-cnn. In Proceedings of the 2015
IEEE International Conference on Computer Vision
(ICCV), ICCV ’15, pages 1440–1448, Washington,
DC, USA. IEEE Computer Society.
Grosjean, P. and Denis, K. (2014). zooimage: Analysis of
numerical zooplankton images.
Grosjean, P., Picheral, M., Warembourg, C., and Gorsky,
G. (2004). Enumeration, measurement, and identifi-
cation of net zooplankton samples using the zooscan
digital imaging system. ICES Journal of Marine Sci-
ence, 61(4):518–525.
Herrera, A., Asensio, M., Mart
´
ınez, I., Santana, A.,
Packard, T., and G
´
omez, M. (2017). Microplastic and
tar pollution on three canary islands beaches: An an-
nual study. Marine Pollution Bulletin. In press.
Irigoien, X., Fernandes, J., Grosjean, P., Denis, K., Albaina,
A., and Santos, M. (2008). Spring zooplankton distri-
bution in the bay of biscay from 1998 to 2006 in re-
lation with anchovy recruitment. Journal of Plankton
Research, 31.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Per-
ryman, M., Andrady, A., Narayan, R., and Law, K. L.
(2015). Plastic waste inputs from land into the ocean.
Science, 347(6223):768–771.
Kononenko, I. (1994). Estimating attributes: Analysis and
extensions of RELIEF. In Bergadano, F. and de Raedt,
L., editors, Machine Learning: ECML-94, pages 171–
182, Berlin. Springer.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Proceedings of the 25th International
Conference on Neural Information Processing Sys-
tems - Volume 1, NIPS’12, pages 1097–1105, USA.
Curran Associates Inc.
L. Bell, J. and R. Hopcroft, R. (2008). Assessment of
zooimage as a tool for the classification of zooplank-
ton. Journal of Plankton Research, 30.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. In Proceedings of the IEEE, volume 86, pages
2278 – 2324.
Medellin-Mora, J. and Escribano, R. (2013). Automatic
analysis of zooplankton using digitized images: State
of the art and perspectives for latin america. Latin
American Journal of Aquatic Research, 41:29–41.
Otsu, N. (1979). A Threshold Selection Method from Gray-
level Histograms. IEEE Transactions on Systems,
Man and Cybernetics, 9(1):62–66.
Plastic Europe (2016). Plastics - the facts 2016.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kauffman Pub., Inc., Los Altos, Califor-
nia.
Sauvola, J. and Pietik
¨
ainen, M. (2000). Adaptive document
image binarization. Pattern Recognition, 33:225–236.
Set
¨
al
¨
a, O., Fleming-Lehtinen, V., and Lehtiniemi, M.
(2014). Ingestion and transfer of microplastics in
the planktonic food web. Environmental Pollution,
185(Supplement C):77 – 83.
Sezgin, M. and Sankur, B. (2004). Survey over image
thresholding techniques and quantitative performance
evaluation. Journal of Electronic Imaging, 13(1):146–
168.
Shim, W. J. and Thomposon, R. C. (2015). Microplastics in
the ocean. Archives of Environmental Contamination
and Toxicology, 69(3):265–268.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In CVPR, pages 1–9. IEEE Computer Society.
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A.,
Rowland, S. J., John, A. W. G., McGonigle, D., and
Russell, A. E. (2004). Lost at sea: Where is all the
plastic? Science, 304(5672):838–838.
Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens,
J., and Janssen, C. R. (2015). Microplastics in sed-
iments: A review of techniques, occurrence and ef-
fects. Marine Environmental Research, 111(Supple-
ment C):5 – 17. Particles in the Oceans: Implication
for a safe marine environment.
Vapnik, V. (1999). The Nature of Statistical Learning The-
ory. Springer-Verlag.
ICPRAM 2018 - 7th International Conference on Pattern Recognition Applications and Methods
652