
Mobile Agents for Robot Control based on PSO

Koji Oda1, Munehiro Takimoto2 and Yasushi Kambayashi1
1Department of Computer and Information Engineering, Nippon Institute of Technology,

4-1 Gakuendai, Miyashiro-machi, Minamisaitama-gun, Saitama 345-8510, Japan
2Department of Information Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan

Keywords: Mobile Agent, Python, Multi-robot, Particle Swarm Optimization.

Abstract: It is a fundamental concern for the robot research community to explore unknown environments. This paper

presents an approach for controlling multi-cooperative robot exploration in an unknown environment. In order

to control multiple robots, we take advantage of multiple mobile agents. In this paper, we report our

experience in implementing a mobile multi-agent system written in Python 2. We chose Python because it is

easy to read and write, and has a rich library. To construct an efficient search algorithm for multiple mobile

robots, we employ an extended particle swarm optimization (PSO) for the robot control algorithm. This

algorithm allows robots to avoid obstacles while utilizing the PSO as a basic search algorithm. To demonstrate

the feasibility of this research, we implemented an agent platform in Python 2, along with a team of mobile

robots controlled by a team of mobile agents on this platform. The imaginary application is a search and

rescue operation after disaster in an urban area. We believe that the combination of mobile agents and mobile

robots contributes lifesaving applications.

1 INTRODUCTION

During the last two decades, robotic systems have

made rapid progress, not only in their behaviors but

also in the way they in which they are controlled. In

particular, a control system based on multiple

software agents can be used in controlling robots in

an efficient manner (Mondada et al., 2004);

(Kambayashi and Takimoto, 2005); (Parker, 2008).

We have conducted research projects that have

taken advantage of multiple mobile agents. These

projects include evacuation route generation at the

time of a disaster using multiple mobile agents, and

searching for victims after a disaster (Nagata et al.,

2013). These two studies have one commonality,

namely, building a multi-agent system in a distributed

environment. As a result of these studies, we have

shown that an efficient resource search is achieved

through communication among multiple mobile

agents.

We have continued applying mobile agents to

other researches. Studies using particle swarm

optimization (PSO) as a search algorithm are also

being conducted using multiple robots (Zhou et al.,

2011). Such researches have applied multiple robots

as particles of PSO. However, there are problems in

using PSO for searching in disaster fields. For

example, because the PSO algorithm does not

recognize the existence of an obstacle within the

search range, we extended the PSO for our research

in order to solve this problem. This algorithm

cooperates with other robots conducting a search, and

performs actions to avoid various obstacles. A

simulation was also carried out.

Certainly, robots that perform tasks such as

exploration and photography have contributed to

disaster relief in recent years. However, because

many of those robots are manipulated by human

beings using wired connections, if problems such as

a disconnection of the connection lines occur, the

robot will go missing. We are especially concerning

a case where noxious or radioactive circumstance.

Therefore, we are developing an autonomous search

robot that does not require human control. Therefore,

it is possible for a robot team to operate in a field too

dangerous for human beings. In addition, we do not

have to worry about a loss of communication.

However, because a command is issued before the

search is started, a flexible operation based on human

judgment is not reflected. The mobile agent system

enables us to send any algorithms or intelligence

required by intelligent search robots by sending

mobile agents after the robots are dispatched.

Oda, K., Takimoto, M. and Kambayashi, Y.
Mobile Agents for Robot Control based on PSO.
DOI: 10.5220/0006727303090317
In Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018) - Volume 1, pages 309-317
ISBN: 978-989-758-275-2
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

309

Such a control algorithm of an autonomous search

robot is difficult without using a mobile software

agent.

We have accumulated experience on various

simulators. In an environment such as a disaster area,

however, we cannot expect stable communication in

a real situation. In addition, it is unknown how long it

will actually take to communicate between the search

robots, or the time required to reach the target search

object, unless the control algorithm is developed to

work on actual machines.

A new question arises when considering the

operation on an actual machine. This is a question of

what type of method should be used to share data.

In this study, we have constructed a mobile

software agent system written in Python 2 that is

dedicated to operation on a small computer applied in

a robot. We report the effectiveness of the system in

human search and rescue under difficult

circumstances using PSO and extended PSO.

The structure of the balance of this paper is as

follows. In the second section, we describe the

background. In the third section, we describe our

mobile sofware agents implemented in Python 2 and

how the agents control multiple robots in a search

field. The fourth section discusses the problems we

have to overcome in order to construct a practical

search robot team that can operate in a real disaster

field, and finally, in the fifth section, we provide some

concluding remarks.

2 BACKGROUND

Thus far, a number of studies on the use of agents

have been conducted (Stone et al., 2000)

(Kambayashi and Takimoto, 2005); (Avilés et al.,

2014); (Shibata et al., 2014); (Kambayashi et al.,

2016); (Taga et al., 2016, 2017). Among them, we are

focusing particularly on mobile agents. We have

constructed a multi-agent system and have been

conducting research on resource searches and

evacuation route generation. The technologies used in

this research are introduced below.

2.1 Mobile Agent

A mobile agent is a program that contitues processing

while moving between computing sites. A mobile

agent can autonomously choose the destination to

which it migrate. As an example application of a

mobile agent, we can imagine multiple resource-

searching robots controlled using mobile software

agents.

Autonomous search robots occasionally search

unnecessary areas. This means that they consume

energy unnecessarily. In order to mitigate this

problem, we introduce mobile agents that allow

multiple robots to share information between them.

We can also use mobile agents to issue instructions to

control multiple robots during a particular action. As

a result, a more efficient search for resources can be

accomplished. Using this feature, Taga et al., (2016;

2017) proposed a method for deriving a return home

route after a disaster using a mobile agent.

2.2 Particle Swarm Optimization

PSO is an optimization algorithm using swarm

intelligence proposed by Kennedy and Eberhart

(1995). It is based on the behavior of insects and

schooling fish and is an algorithm imitating the habit

of gathering at locations where there is a high

possibility of food being found. Figure 1 shows the

process of particle gathering.

Figure 1: Transition of particles.

Eight or more particles each search for and finally

gather near the target. Particle movement is

determined using three values. The first one is the

localbest. It stores the best value and coordinates that

the particle has searched. The second is globalbest. It

shares the coordinates with the best value in the

search of an entire particle group. The third is inertia.

Each particle holds a value indicating how much it

should move from its previous coordinates, and is

influenced by this value.

PSO is defined using the two equations above,

where i is the particle number, and t is the time. In

addition, 𝜔 is the inertia coefficient, and is set based

on how much inertia is affected from the vector 𝑉𝑖
𝑡

from the previous point. Then, 𝑉𝑖
𝑡+1 is a vector that

moves to the next coordinate (1). To calculate this

value, we need the constants C1 and C2, the random

numbers rand1, rand2, the distance from the current

location to localbest 𝑃𝑖
𝑡, and the distance to globalbest

𝑃𝑔
𝑡. The coordinate of the next point is generated from

the movement vector to the current position and the

Vi
t+1 = ω Vi

t + C1 rand1 (Pi
t − Xi

t) + C2 rand2 (Pg
t − Xi

t) (1)

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

310

next point (2). Figure 2 shows the process for

determining the destination coordinates.

Xi
t+1 = Xi

t + Vi
t+1 (2)

Figure 2: Destination coordinate determination.

A multi-robot resource search based on PSO has

proved that more than eight robots can find targets in

an open space without a collision (Nighot et al.,

2012). In addition, Zhu et al. proposed an algorithm

that enables robots to search for targets without

accurate position information (Zhu et al., 2011).

However, they are intended to search in open spaces.

2.3 Extended PSO

Extended PSO described in this paper is an extension

of PSO that includes an obstacle avoidance algorithm.

Ishiwatari et al. showed its theoretical effectiveness

on a simulator (Ishiwatari et al., 2017). We

demonstrated its effectiveness using actual machines.

In general, PSO does not recognize the presence

of obstacles within the search range. For this reason,

when a robot is conducting a search, it is strongly

affected by obstacles. If the robot cannot easily avoid

an obstacle, time will be wasted. In order to solve this

problem, a method for generating a route to bypass an

obstacle using a mobile agent has been developed and

studied (Uehara et al., 2016). The effectiveness of this

agent was confirmed through simulations too.

An operational outline of extended PSO is as

follows. First, when a robot detects an obstacle, it

stops its movement and sends the mobile agent to the

nearest terminal. The agent holds the movement log

of the robot, and compares the movement logs of two

robots to judge whether there is an intersection. If so,

the agent moves to the other robot. This process is

repeated until the agent reaches the target robot.

Ultimately, the mobile agent reaches the target robot

within the range of L and D in Fig. 3, which are

arbitrarily set.

L and D are empirically derived constants. They

are used to determine to which robot the mobile agent

should migrate. L is the distance and set to be shorter

than the wireless range. The moving distance on the

straight line between the source and the target robot

needs to be not less than L. On the other hand, D is

the angle which indicates the rough direction to which

the mobile agent migrate. The target robot needs to be

within the angle D in front of the source robot. Uehara

et al. have intensively studied the optimal values of L

and D (Uehara et al., 2016).

The mobile agent then follows the moving robot

in reverse order and returns to the first robot. Next,

the collected data are handed over to the robot, and

the agent stops functioning. The robot receives the

search results of the alternative route. The robot

moves to a position based on such data and restarts

the search according to the PSO algorithm. The

calculation of the next point continues even when a

detour is being searched. If the next point becomes an

obstacle-free direction owing to the influence of

globalbest, the search for an alternative route is

stopped, and the search of the PSO is resumed. In this

way, a detour is created to avoid wasting time if

obstacles are present. Figure 3 shows how the

extended PSO generates a detour.

Figure 3: Operation of extended PSO.

Another feature of this algorithm is the

replacement of robots. When robots detect a collision,

they continue searching after exchanging information

such as the search logs. They continue with their

actions as if the robots had simply passed each other.

This is because it is physically difficult for robots to

avoid and pass one another. Uehara et al. (2016)

demonstrated the theoretical effectiveness of this

algorithm.

2.4 Multi-robot System

Search and rescue can be efficiently conducted using

multiple well-coordinated robots. We addressed the

Mobile Agents for Robot Control based on PSO

311

collaboration between robots by employing multiple

mobile software agents. Because a robot operates

using batteries, the driving time is limited. Thus, it is

necessary to conduct an efficient search in less time.

In this study, we aim to introduce extended PSO using

a mobile agent.

3 PROPOSED METHOD

In this study, we use mobile software agents to allow

robots to share the globalbest value of PSO, and

conduct route generation using extended PSO. To

achieve this purpose, we created a platform for

sending and receiving mobile agents.

3.1 Python Agent Platform

A control program is used to send and receive agent

programs. The control program created in this study

is based on a Python agent platform, which is

installed in all robots. We have created this Python

agent platform for this purpose.

The platform consists of two parts. One is the

server part, which receives and processes agents. The

other is the client part, which transmits agents. The

server part waits for communication from the client

to receive an agent. On the other hand, the client

specifies the IP address of the server and sends the

agent to the remote server of the address. At that time,

the program code of the mobile agent is transmitted

after being converted into a character string. Then, the

server side of the remote site receives the character

string, and converts it into a program file. The server

then imports the content of the program file as a

module, and executes it. This is similar to the

serialization and deserialization in the Java system.

Figure 4 shows the schematic diagram of the agent

platform.

Figure 4: Agent platform overview.

The solid lines represent the function invocations.

The large dotted lines indicate references, and the

small dotted lines indicate the relation between the

generation and deletion of files. Another agent

platform on the left is assumed, and communication

is carried out. Details of this are provided in the

following subsections.

3.1.1 Initialization

All the robots are controlled using mobile agents.

Each robot waits for a starting signal that is issued by

the mobile agent. This initial transmission of the

mobile agent is achieved using the main controller on

the server PC. The main controller issues one mobile

agent for each robot as the starting signal. The content

of this signal is a file called start.txt. The initial

mobile agent puts this text file in the robot’s

directory. When the robot recognizes this file, it starts

searching.

3.1.2 Creation of Mobile Agents

The mobile agent program file is distributed to each

robot as start.txt. The mobile agent program can be

easily created, similar to a normal Python program.

The following program fragment shows the skeleton

of a typical agent program.

def main(name, arg):

f=open('./watch/'+name+'.txt','w')

f.write(anything)
f.close()

-here the body of the agent activities.

os.remove('./watch/'+name+.txt')

The name of the agent created is given as an

argument to the constructor. This name is used as an

accompanying text file name that indicates the

existence of the agent when it arrives at a new site.

When the agent leaves the site, or commits suicide, its

destructor deletes this text file.

When the mobile agent wants to migrate to

another site, it notifies the server regarding where it

will move next. In order to do so, the mobile agent

creates a text file called nextto.txt, and writes the IP

address of the target server.

f=open('./watch/nextto.txt', 'w')

f.write(IPaddress)
f.close()

3.1.3 Sending Mobile Agent

Upon receiving the agent’s request, the agent server

calls the client function to send the agent. The follow-

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

312

ing program fragment shows the client function.

def nextclient(task,name,arg):

server="http://"+nextip+":7070"

c=xmlrpclib.ServerProxy(server)

c.spawn_agent(task,name,arg)

The client function uses xmlrpclib of the Python

library. This library follows XML-RPC. First, the

destination IP address is set as the URL. Then, the

xmlrpclib.ServerProxy function is instantiated. This

function calls the function of the target server. By

activating the spawn_agent function existing on the

target server, the mobile agent starts up and begins

moving.

The arguments include the task (mobile agent

program code) and name (mobile agent name),

among others. The program code uses an open

function to refer to the program file. Alternatively, it

is also possible to transmit the received code as is or

after modification.

3.1.4 Receiving Mobile Agent

The server that receives the mobile agents uses the

SimpleXMLRPCServer library as follows:

s=SimpleXMLRPCServer((myip, 7070))

s.register_instance(AgentPlatform())

s.serve_forever()

In the initialization step, each server obtains its IP

address and assigns it to the variable myip. Next, it

specifies the AgentPlatform class using the

register_instance function in order to invoke the

methods defined in AgentPlatform. When all the

servers in this agent system perform this action, all

the functions in AgentPlatform are available for all

the servers in the system. It is necessary for the server

that receives the mobile agent to be active at all times.

In order to achieve this, the serve_forever function is

used.

3.1.5 Starting Mobile Agent

When the client starts the spawn_agent function in the

AgentPlatform class on the target server, the agent

starts up and begins moving. This is possible because

all the functions in all the AgentPlatform classes are

visible.

The received server creates a file called name.txt

using “name” in the “/log” directory. Next, it stores

the file as a module in the mloader library, and then

deletes the file. The mobile agent program is then

executed by assigning a thread.

3.1.6 Mobile Agent Movement

In this section, we describe how the code in Section

3.1.2 works. The server is always monitoring the

“/watch” directory in the watchdog library. This

makes it possible to conduct operations triggered

through a file creation, modification, or deletion.

When an agent creates a file called name.txt in the

directory, the server creates a name item in a

dictionary called agentpool. In it, the task, arg, and tid

are described. Here, tid is the return value at thread

startup. Then, when the agent deletes name.txt, the

server deletes the name item from within agentpool

using the kill_agent_task function. With this flow, we

manage the list of running agents.

On the other hand, when the agent generates a file

called nextto.txt, the server refers to the contents of

the document. Then, when the mobile agent stops its

operation, it executes the client function for that IP

address and transmits the mobile agent.

3.2 PSO

In this study, robots conduct a search using extended

PSO. For this reason, we first create a moving

algorithm using ordinary PSO and install it in the

robot. Next, the operation of extended PSO is added.

In PSO, each particle generates coordinates of the

next point from three values: localbest, globalbest,

and inertia. Among them, globalbest should always

be shared with other particles. A mobile agent is used

as a sharing method.

In this study, because a robot is regarded as a

particle, it is necessary to delicately adjust the motor

to move to the next point. The motor control at this

time is described in Section 3.4.

The mobile agents are responsible to allow all the

robots to share the globalbest. When a robot obtains a

better value than the currently held globalbest, it

shares its value and the current coordinates with the

other robots. Sharing will transmit only one hop

mobile agent to each robot. This agent compares its

value with the text file holding the globalbest of the

receiving side, overwrites the higher score, and

disappears. In this way, the values are shared.

At this time, we use the radio field intensity

indicator as the evaluation value. This value is called

the received signal strength indicator (RSSI). All

values are negative, and the closer a value is to zero,

the stronger the intensity, whereas the further away

from zero the value is, the weaker the intensity.

Therefore, as the value approaches zero, it can be

judged as approaching the coordinates of the search

target.

Mobile Agents for Robot Control based on PSO

313

In order to obtain the RSSI, the command

iwconfig is common. However, this command must

be connected to the target access point, which is not

suitable for searching for an unspecified terminal

called a victim. Therefore, we created a new

command called “getsi” that can be executed on the

terminal. The contents of the getsi command are as

follows:

#!/bin/sh

sudo iwlist wlan0 scan

| grep -e ESSID -e Quality

By executing this getsi command, it is possible to

obtain the SSID and RSSI values within the range that

can be currently recognized. The link quality refers to

the connection quality, and discrimination of noise

and other factors is carried out. However, because it

is difficult to obtain fine variations in values,

utilization at the time of medium distance use is

considered. At this time, we use RSSI as the main

evaluation value.

The RSSI can be obtained using the above

command. By applying it, we can execute this

terminal command on Python using a subprocess

library. By adjusting the result, we can obtain the

RSSI value. Thus, an evaluation value at this

coordinate is obtained.

3.3 Extended PSO

We extend PSO such that the algorithm includes a

feature for avoiding obstacles. Uehara et al. have

developed this avoidance algorithm (Uehara et al.,

2016). A mobile agent is used to generate a route to

avoid obstacles. At that time, other search robots

cooperate in route generation while conducting a

search as usual.

When a robot detects an obstacle, it stops and

generates a mobile agent. It then transmits to another

wirelessly connected robot. This agent moves

between the robots while holding the moved

coordinate log stored in each robot. The moved agent

determines whether there is an intersection of the

movement log of the current robot and the movement

log of the transmission source robot; it then holds the

log and moves to the next robot if it exists. On the

other hand, if there is no intersection point, it goes

back one step and moves to another connectable robot

and compares the logs. Finally, if a robot within L

meters and D degrees of the front of the source robot

is reached, it takes the previous movement log back

to the source robot. After that, interrupt handling is

applied at the server, and a detour route is generated

to avoid any obstacles.

The source robot shares its globalbest even before

the agent returns. Therefore, as the coordinates of the

globalbest are changed, the search may be possible

without bypassing the obstacle. At this time, the

search is immediately resumed.

When robots collide, they exchange all

information with each other. Then, the two robots

behave as if they had passed one another. For this

purpose, the robot stores all the values such as the

movement log and localbest in an array and transmits

the array using a mobile agent. When the exchange of

the values is completed for both robots, the

replacement ends. Next, both robots continue

searching for the next point. Ishiwatari et al., (2017)

developed this exchange algorithm.

3.4 Search Robot

Search and rescue is achieved using a team of mobile

robots. Because each search robot needs to

communicate with other robots, it is necessary to

construct a wireless network. Therefore, we created

robots equipped with Raspberry Pi. Our agent system

has been built to perform on top of the Raspbian

operating system in Raspberry Pi. Raspberry Pi uses

the GPIO pin to acquire data from the sensor and

control the motor. The robot has a caterpillar, and was

designed for comfortable rotation, making a change

in direction to the next point through PSO easy. With

PSO, because the sharing of coordinates is important,

controlled movement to an accurate position is

necessary. Therefore, directional data are acquired

using a compass module, which is used for angle

control. In addition, the coordinate data are obtained

through a GPS sensor. Because it is difficult to adjust

the position using a motor, a highly accurate

operation by the compass module is important. The

power supply supplies power from a mobile battery

for smartphone use. Figure 5 shows the search robot.

Because Raspbian is used as the operating system

of Raspberry Pi, and the agent platform is developed

using Python 2, the robot’s motor control system and

PSO were also written in Python. The reason for

adopting Python is that, because the agent platform is

on Python, it was judged that a more efficient

arrangement can be obtained if the same language is

used, and the behavior, including the robot’s motion

toward the mobile agent, can be directly described.

As a result, it is possible for the moving agent to

control the robot through interrupt handling.

To control the motor, we use the wiringpi library

and send instructions from the GPIO pin to the motor

driver. Four AA batteries are used for motor control,

and are installed separately from mobile batteries.

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

314

Figure 6 shows a schematic diagram of the robot

system. Descriptions of each part are described

below.

Figure 5: The search robot.

Figure 6: System configuration overview.

Central Control uses Raspberry Pi. Coordinate

calculations of PSO are performed based on data from

each sensor. At this time, the globalbest is shared

using the mobile agent. The next coordinates are

calculated, and the motor is controlled to guide the

robot to the next coordinates. At this stage, errors

from the motor may occur, and it is necessary to

continuously monitor the robot using a compass

module, GPS sensor, or similar device, correct any

errant values, and move to the accurate coordinates.

Agent Platform receives and executes an agent.

The agent starts operation from the client by

activating the function in it. It manages what agents

reside on the robot. In addition, when the agent is a

mobile agent, as described above, a new agent

program is generated, and a function used as a client

is activated by specifying the next movement

destination. This is a control program that mainly

manages and operates a list of agents.

Sensors collect the surrounding data are

numerized and imported into a robot. Based on these

values, PSO is executed. Because the sensors are

connected to GPIO pins, addition and reduction are

easy to achieve. Data essential for PSO, such as the

coordinates and angle, are obtained from each sensor.

The data are analyzed programmatically and reflected

in the robot operation. Table 1 shows the mounted

sensors.

Table 1: Mounted sensors.

GPS sensor GYSFDMAXB

Compass module HMC5883L

Acceleration sensor MPU-6050

Mortar is TA7291P that is used for the motor

driver applied to the motor control. Control is carried

out using a program with the aforementioned carpi

library. The speed of the motor can be adjusted. It is

important to rotate at a low speed so as not to avoid

overlooking the value of the compass module when

turning toward the next movement point. Four AA

batteries are used as the motor power supply.

Figure 7 shows a team of mobile robots search a

target under control of mobile agents. The Wi-Fi

access point in the photo is the target.

4 DISCUSSION

For the experiment applied during this project, we

used an environment in which communication

through wireless LAN can be established. The agent

uses the IP address to specify the transmission

destination. Therefore, this agent platform cannot

operate unless the terminal is given an IP address.

However, we may need to cope with an

environment in which wireless LAN is not available.

In such a case, it may be necessary to achieve

communication using a mobile ad hoc network. This

results in a dynamic network configuration and very

unstable communication. However, if information

sharing using mobile agents can be achieved, the

search can be conducted more efficiently.

If a mobile ad hoc network is to be implemented,

routing that takes into account network congestion

and terminal power consumption becomes necessary.

Furthermore, it is necessary to deeply consider a

method for bypassing the communication when a

terminal is disconnected. Such methods have been

actively debated (Kambayashi et al., 2016).

5 CONCLUSIONS

In this paper, we proposed and developed a mobile

Mobile Agents for Robot Control based on PSO

315

Figure 7: Team of robots cooperatively search.

agent system using Python in order to create a system

that carries out expanded PSO using real robots,

which conduct a search as PSO particles. The

imaginary application is a search and rescue operation

after disaster in an urban area. Even though the

current system is a team of prototype robots, revised

robots should be able to locate the victims buried in

rubble in the disaster area.

In addition, we believe that flexibility between

mobile agents and mobile ad hoc networks is

compatible within a limited environment such as a

disaster site. However, in constructing MANET, the

problem raised in Section 4 occurs. In order to operate

a search system using an agent system at a real

disaster site, it is necessary to address these issues.

ACKNOWLEDGEMENTS

The authors appreciate Yuta Arai and Taiki

Miyakawa for their contribution in the

implementation of the robot systems. This work is

partially supported by Japan Society for Promotion of

Science (JSPS), with the basic research program (C)

(No. 17K01304), Grant-in-Aid for Scientific

Research (KAKENHI) and Suzuki Foundation.

REFERENCES

Avilés, A., Takimoto, M. and Kambayashi, Y., 2014.

Distributed evacuation route planning using mobile

agents, In Transactions on Computational Collective

Intelligence XVII, pages 128-144.

Ishiwatari, H., Sumikawa, Y., Takimoto, M. and

Kambayashi, Y., 2017. Cooperative Control of Multi-

Robot System Using Mobile Agent for Multiple Source

Localization, In Proceedings of the Eighth

International Conference on Swarm Intelligence, pages

210-221.

Kambayashi, Y., Nishiyama, T., Matsuzawa, T. and

Takimoto, M., 2016. An Implementation of an Ad hoc

Mobile Multi-Agent System for a Safety Information,

In Proceeding of the Thirty-sixth International

Conference on Information Systems Architecture and

Technology, pages 201-213.

Kambayashi, Y. and Takimoto, M., 2005. Higher-Order

Mobile Agent for Controlling Intelligent Robots,

International Journal of Intelligent Information

Technologies, 1(2), 28-42.

Kennedy, J. and Eberhart, R., 1995. Particle swarm

optimization, In Proceedings of IEEE International

Conference on Neural Networks 4, pages 1942-1948.

Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. W.,

Floreano, D., Deneubourg, J., Nolfi, S., Gambardella, L.

M., and Dorigo, M., 2004. Swarm-Bot: a New

HAMT 2018 - Special Session on Human-centric Applications of Multi-agent Technologies

316

Distributed Robotic Concept, Autonomous Robots,

pages 193-221.

Nagata, T., Takimoto, M. and Kambayashi, Y., 2013.

Cooperatively Searching Objects Based on Mobile

Agents, In Transaction on Computational Collective

Intelligence XI, pages 119-136.

Nighot, M. K., Patil, V. H. and Mani, G. S., 2012. Multi-

robot hunting based on swarm intelligence, In Hybrid

Intelligent Systems (HIS), 2012 12th International

Conference, pages 203-206.

Parker, L. E., 2008. Distributed intelligence: overview of

the field and its application in multi-robot systems,

Journal of Physical Agents, 2(1), pages 5-14.

Stone, P. and Veloso, M., 2000. Multiagent systems: A

survey from a machine learning perspective,

Autonomous Robots, 8(3), 345-383.

Shibata, K., Takimoto, M. and Kambayashi, Y., 2014.

Expanding the Control Scope of Cooperative Multiple

Robots, Proceedings of the Eighth KES International

Conference on Agent and Multi-Agent Systems:

Technologies and Applications, In Advances in

Intelligent Systems and Computing Volume 296, pages

17-26.

Taga, S., Matsuzawa, T., Takimoto, M. and Kambayashi,

Y., 2017. Multi-Agent Approach for Evacuation

Support System, In Proceeding of the Ninth

International Conference on Agents and Artificial

Intelligence, pages 220-227.

Taga, S., Matsuzawa, T., Takimoto, M. and Kambayashi,

Y., 2016. Multi-Agent Approach for Return Route

Support System Simulation, In Proceeding of the

Eighth International Conference on Agents and

Artificial Intelligence, pages 269-274.

Takahashi, R., Takimoto, M. and Kambayashi, Y., 2015.

Cooperatively Transporting Unknown Objects Using

Mobile Agents, In Agents and Artificial Intelligence:

6th International Conference, pages 46-62.

Uehara, S., Takimoto, M. and Kambayashi, Y., 2016.

Mobile Agent Based Obstacle Avoidance in Multi-

Robot Hunting, In Proceedings of the 20th Asia Pacific

Symposium on Intelligent and Evolutionary Systems,

pages 443-452.

Zhou, Y., Xiao, K., Wang, Y., Liang, A. and Hassanien, A.

E., 2013. A pso-inspired multi-robot map exploration

algorithm using frontier-based strategy. International

Journal of System Dynamics Applications, 2(2), 1-13.

Zhu, Q., Liang, A. and Guan, H., 2011. A pso-inspired

multi-robot search algorithm independent of global

information, Proceedings of IEEE Symposium on

Swarm Intelligence, pages 1-7.

Mobile Agents for Robot Control based on PSO

317

