Klar, T., Perner, M., Grosse, S., von Plessen, G., Spirkl, W.,
and Feldmann, J. (1998). Surface-plasmon resonances
in single metallic nanoparticles. Physical Review Let-
ters, 80:4249–4252.
Klepp, J., Pruner, C., Tomita, Y., Geltenbort, P., Drevenˇsek-
Olenik, I., Gyergyek, S., Kohlbrecher, J., and Fally,
M. (2012a). Holographic gratings for slow-neutron
optics. Materials, 2012:2788–2815.
Klepp, J., Pruner, C., Tomita, Y., Mitsube, K., Geltenbort,
P., and Fally, M. (2012b). Mirrors for slow neutrons
from holographic nanoparticle-polymer free-standing
film-gratings. Applied Physics Letters, 100:214104–
1–214104–3.
Klepp, J., Pruner, C., Tomita, Y., Plonka-Spehr, C.,
Ivanov, S., Geltenbort, P., Kohlbrecher, J., Ellabban,
M. A., and Fally, M. (2011). Neutron diffraction by
holographic gratings recorded in SiO
2
nanoparticle-
polymer composites. Physical Review A, 84:013621–
1–013621–7.
Klepp, J., Sponar, S., and Hasegawa, Y. (2014). Fundamen-
tal phenomena of quantum mechanics explored with
neutron interferometers. Progress of Theoretical and
Experimental Physics, 2014:082A01–1–082A01–61.
Klepp, J., Tomita, Y., Pruner, C., Kohlbrecher, J., and Fally,
M. (2012c). Three-port beam splitter for cold neu-
trons using holographic nanoparticle-polymer com-
posite diffraction gratings. Applied Physics Letters,
101:154104–1–154104–3.
Kogelnik, H. (1969). Coupled wave theory for thick holo-
gram gratings. The Bell System Technical Journal,
48:2909–2947.
Liu, X., Adachi, Y., Tomita, Y., Oshima, J., Nakashima,
T., and Kawai, T. (2012). High-order nonlinear opti-
cal response of a polymer nanocomposite film incor-
porating semiconducotor CdSe quantum dots. Optics
Express, 20:13457–13469.
Liu, X., Matsumura, K., Tomita, Y., Yasui, K., Kojima, K.,
and Chikama, K. (2010). Nonlinear optical responses
of nanoparticle-polymer composites incorporating or-
ganic (hyperbranched polymer)-metallic nanoparticle
complex. Journal of Applied Physics, 108:073102–1–
073102–9.
Li˘cen, M., D.-Olenik, I.,
˘
Coga, L., Gyergyek, S., Kralj, S.,
Fally, M., C.Pruner, P.Geltenbort, Gasser, U., Nagy,
G., and Klepp, J. (2017). Neutron diffraction from su-
perparamagnetic colloidal crystals. Journal of Physics
and Chemistry of Solids, 110:234–240.
Lourtioz, J.-M., Benisty, H., Berger, V., G´erard, J.-M., and
Mystre, D. (2005). Photonic Crystals. Springer,
Berlin.
Mitsube, K., Nishimura, Y., Nagaya, K., Takayama, S.,
and Tomita, Y. (2014). Holographic nanoparticle-
polymer composites based on radical-mediated thiol-
yne photopolymerizations: Characterization and shift-
multiplexed holographic digital data page storage.
Optical Materials Express, 4:982–996.
Momose, K., Takayama, S., Hata, E., and Tomita, Y. (2012).
Shift-multiplexed holographic digital data page stor-
age in a nanoparticle-(thiol-ene) polymer composite
film. Optics Letters, 37:2250–2252.
Omura, K. and Tomita, Y. (2010). Photopolymerization
kinetics and volume holographic recording in ZrO
2
nanoparticle-polymer composites at 404 nm. Journal
of Applied Physics, 107:023107–1–023107–6.
Rauch, H. and Werner, S. A. (2015). Neutron Interferome-
try. Oxford University Press, Oxford, 2nd edition.
Rupp, R. A., Hehmann, J., Matull, R., and Ibel, K. (1990).
Neutron diffraction from photoinduced gratings in a
PMMA matrix. Physical Review Letters, 64:301–302.
Sears, V. F. (1989). Neutron Optics. Oxford University
Press, Oxford.
Smith, D. R., Pendry, J. B., and Wiltshire, M. C. K. (2004).
Metamaterials and negative refractive index. Science,
305:788–792.
Somenkov, V. A., Shilstein, S. S., Belova, N. E., and
Utemisov, K. (1978). Observation of dynamical os-
cillations for neutron scattering by Ge crystals using
the inclination method. Solid State Communications,
25:593–595.
Suzuki, N. and Tomita, Y. (2004). Silica nanoparticles-
dispersed methacrylate photopolymer with net diffrac-
tion efficiency near 100%. Applied Optics, 43:2125–
2129.
Suzuki, N. and Tomita, Y. (2007). Holographic scattering
in SiO
2
nanoparticles-dispersed photopolymer films.
Applied Optics, 46:6809–6814.
Suzuki, N., Tomita, Y., and Kojima, T. (2002). Holographic
recording in TiO
2
nanoparticle-dispersed methacry-
late photopolymer films. Applied Physics Letters,
81:4142–4123.
Suzuki, N., Tomita, Y., Ohmori, K., Hidaka, M., and
Chikama, K. (2006). Highly transparent ZrO
2
nanoparticle-dispersed acrylate photopolymers for
volume holographic recording. Optics Express,
14:12712–12719.
Takayama, S., Nagaya, K., Momose, K., and Tomita,
Y. (2014). Effects of symbol modulation coding
on readout fidelity of shift-multiplexed holographic
digital data page storage in a photopolymerizable
nanoparticle-(thiol-ene)polymer composite film. Ap-
plied Optics, 53:B53–B59.
Tanaka, K., Hara, M., Tokuyama, K., Hirooka, K., Ish-
ioka, K., Fukumoto, A., and Watanabe, K. (2007).
Improved performance in coaxial holographic data
recording. Optics Express, 15:16196–16209.
Tomita, Y., Chikama, K., Nohara, Y., Suzuki, N., Fu-
rushima, K., and Endoh, Y. (2006a). Two-dimensional
imaging of atomic distribution morphology cre-
ated by holographically induced mass transfer of
monomer molecules and nanoparticles in a silica-
nanoparticle-dispersed photopolymer film. Optics
Letters, 31:1402–1404.
Tomita, Y., Furushima, K., Ochi, K., Ishizu, K.,
Tanaka, A., Ozawa, M., Hidaka, M., and Chikama,
K. (2006b). Organic nanoparticle (hyperbranched
polymer)-dispersed photopolymers for volume holo-
graphic storage. Applied Physics Letters, 88:071103–
1– 071103–3.
Tomita, Y., Hata, E., Momose, K., Takayama, S., Liu,
X., Chikama, K., Klepp, J., Pruner, C., and Fally,