traction and recognition in multi-camera surveillance.
Multimedia Tools and Applications, 50(1):75–94.
Hausdorff, J. M., Lertratanakul, A., Cudkowicz, M. E.,
Peterson, A. L., Kaliton, D., and Goldberger, A. L.
(2000). Dynamic markers of altered gait rhythm in
amyotrophic lateral sclerosis. Journal of applied phys-
iology, 88(6):2045–2053.
Hausdorff, J. M., Rios, D. A., and Edelberg, H. K. (2001).
Gait variability and fall risk in community-living older
adults: A 1-year prospective study. Archives of Physi-
cal Medicine and Rehabilitation, 82(8):1050 – 1056.
Hodgins, D. (2008). The importance of measuring human
gait. Medical Device Technology, 19(5):42–44.
Hoff, J., Wagemans, E., Van Hilten, J., et al. (2001). Ac-
celerometric assessment of levodopa-induced dyski-
nesias in parkinson’s disease. Movement disorders,
16(1):58–61.
Kavanagh, J. J. and Menz, H. B. (2008). Accelerometry:
a technique for quantifying movement patterns during
walking. Gait & posture, 28(1):1–15.
Keijsers, N. L., Horstink, M. W., and Gielen, S. C. (2003).
Movement parameters that distinguish between vol-
untary movements and levodopa-induced dyskinesia
in parkinsons disease. Human movement science,
22(1):67–89.
Keijsers, N. L., Horstink, M. W., and Gielen, S. C. (2006).
Ambulatory motor assessment in parkinson’s disease.
Movement Disorders, 21(1):34–44.
Khan, M. E. and Dutt, D. N. (2007). An Expectation-
Maximization Algorithm Based Kalman Smoother
Approach for Event-Related. Transaction of biomedi-
cal engineering, 54(7):1191–1198.
Labbe, R. R. (2017). Kalman and Bayesian Filters in
Python.
Leu, A., Risti
´
c-Durrant, D., and Gr
¨
aser, A. (2011). A robust
markerless vision-based human gait analysis system.
In Applied Computational Intelligence and Informat-
ics (SACI), 2011 6th IEEE International Symposium
on, pages 415–420. IEEE.
Liu, T. and Liu, J. (2014). Mobile robot aided silhou-
ette imaging and robust body pose recognition for
elderly-fall detection. International Journal of Ad-
vanced Robotic Systems, 11(3):42.
Luinge, H. J. and Veltink, P. H. (2005). Measuring orien-
tation of human body segments using miniature gyro-
scopes and accelerometers. Medical and Biological
Engineering and computing, 43(2):273–282.
MacCormick, J. (2011). How does the kinect work. Pre-
sentert ved Dickinson College, 6.
Mihradi, S., Dirgantara, T., Mahyuddin, A. I., et al. (2011a).
Development of an optical motion-capture system for
3d gait analysis. In Instrumentation, Communications,
Information Technology, and Biomedical Engineering
(ICICI-BME), 2011 2nd International Conference on,
pages 391–394. IEEE.
Mihradi, S., Dirgantara, T., Mahyuddin, A. I., et al. (2011b).
Development of an optical motion-capture system for
3d gait analysis. In Instrumentation, Communications,
Information Technology, and Biomedical Engineering
(ICICI-BME), 2011 2nd International Conference on,
pages 391–394. IEEE.
O’Donovan, K. J., Greene, B. R., McGrath, D., O’Neill,
R., Burns, A., and Caulfield, B. (2009). Shimmer: A
new tool for temporal gait analysis. In Engineering
in Medicine and Biology Society, 2009. EMBC 2009.
Annual International Conference of the IEEE, pages
3826–3829. IEEE.
Peel, N. M., Kuys, S. S., and Klein, K. (2013). Gait speed as
a measure in geriatric assessment in clinical settings:
a systematic review. The Journals of Gerontology: Se-
ries A, 68(1):39–46.
Rauch, H. E., Striebel, C. T., and Tung, F. (1965). Maxi-
mum likelihood estimates of linear dynamic systems.
AIAA Journal, 3(8):1445–1450.
Sage, A. and Melsa, J. (1971). Estimation theory with ap-
plications to communications and control. Technical
report, Southern methodist univ Dallas tex informa-
tion and control sciences center.
Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finoc-
chio, M., Blake, A., Cook, M., and Moore, R. (2013).
Real-time human pose recognition in parts from sin-
gle depth images. Communications of the ACM,
56(1):116–124.
Sontag, E. D. (2013). Mathematical control theory:
deterministic finite dimensional systems, volume 6.
Springer Science & Business Media.
Stone, E. E. and Skubic, M. (2011a). Evaluation of an in-
expensive depth camera for passive in-home fall risk
assessment. In Pervasive Computing Technologies for
Healthcare (PervasiveHealth), 2011 5th International
Conference on, pages 71–77. Ieee.
Stone, E. E. and Skubic, M. (2011b). Passive in-home
measurement of stride-to-stride gait variability com-
paring vision and kinect sensing. In Engineering in
Medicine and Biology Society, EMBC, 2011 Annual
International Conference of the IEEE, pages 6491–
6494. IEEE.
Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
robotics. MIT press.
Van Den Broeck, B., Vuegen, L., Van Hamme, H., Moo-
nen, M., Karsmakers, P., and Vanrumste, B. (2013).
Footstep localization based on in-home microphone-
array signals. Assistive Technology: From Research
to Practice: AAATE 2013, 33:90.
Van Kan, G. A., Rolland, Y., Andrieu, S., Bauer, J.,
Beauchet, O., Bonnefoy, M., Cesari, M., Donini, L.,
Gillette-Guyonnet, S., Inzitari, M., et al. (2009). Gait
speed at usual pace as a predictor of adverse outcomes
in community-dwelling older people an international
academy on nutrition and aging (iana) task force. The
journal of nutrition, health & aging, 13(10):881–889.
Viccaro, L. J., Perera, S., and Studenski, S. A. (2011). Is
timed up and go better than gait speed in predicting
health, function, and falls in older adults? Journal of
the American Geriatrics Society, 59(5):887–892.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In Computer Vi-
sion and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Confer-
ence on, volume 1, pages I–I. IEEE.
Wahid, N., Rahmat, M. F., and Jusoff, K. (2010). Compara-
tive assesment using lqr and fuzzy logic controller for
ICT4AWE 2018 - 4th International Conference on Information and Communication Technologies for Ageing Well and e-Health
60