nitive state of patients for the clinician. Journal of
Psychiatric Research, 12(3):189–198.
Fraser, K. C. and Hirst, G. (2016). Detecting semantic chan-
ges in alzheimers disease with vector space models.
In Proceedings of LREC 2016 Workshop. Resour-
ces and Processing of Linguistic and Extra-Linguistic
Data from People with Various Forms of Cognitive/P-
sychiatric Impairments (RaPID-2016), number 128.
Link¨oping University El ectronic Press.
Fraser, K. C., Meltzer, J. A., and Rudzicz, F. ( 2016).
Linguistic features identify Alzheimers disease in
narrative speech. Journal of Alzheimer’s Disease,
49(2):407–422.
Haegeman, L. (1994). Introduction to Government and Bin-
ding Theory. Blackwell Textbooks i n Linguistics. Wi-
ley.
Kaplan, E. (1983). The assessment of aphasia and related
disorders, volume 2. Lippincott Wi lliams & Wilkins.
Klein, D. and Manning, C. D. (2003). Accurate unlexicali-
zed parsing. In Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics-
Volume 1, pages 423–430. Association for Computa-
tional Linguistics.
Lee, C. N., Koh, Y. C., Moon, C. T., Park, D. S., and Song,
S. W. (2015). Serial Mini-Mental Status Examination
to Evaluate Cognitive Outcome in Patients with Trau-
matic Brain Injury. Korean J Neurotrauma, 11(1):6–
10.
Macwhinney, B., F romm, D., Forbes, M., and Holland, A.
(2011). AphasiaBank: Methods for Studying Dis-
course. Aphasiology, 25(11):1286–1307.
Maestre, G. E. (2012). Assessing dementia in resource-
poor regions. Current Neurology and Neuroscience
Reports, 12(5):511–519.
Marcus, M. P., Marcinkiewicz, M. A., and S antorini, B.
(1993). Building a large annotated corpus of eng-
lish: The penn treebank. Computational linguistics,
19(2):313–330.
Meinshausen, N. and B¨uhlmann, P. (2010). Stability se-
lection. Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), 72(4):417–473.
Molloy, D. W., Alemayehu, E., and R oberts, R. (1991).
Reliability of a Standardized Mini-Mental State Ex-
amination compared with the traditional Mini-Mental
State Examination. The American Journal of Psychi-
atry, 148(1):102–105.
Orimaye, S. O., Wong, J. S., Golden, K. J., Wong, C. P., and
Soyiri, I. N . (2017). Predicting probable al zheimers
disease using linguistic deficits and biomarkers. BMC
Bioinformatics, 18(1):34.
Orimaye, S. O., Wong, J. S.-M., and Golden, K. J. (2014).
Learning predictive linguistic features for alzheimers
disease and related dementias using verbal utterances.
In Proceedings of the 1st Workshop on Computational
Linguistics and Clinical Psychology (CLPsych), pages
78–87. sn.
Pangman, V. C., Sloan, J., and Guse, L. (2000). An exami-
nation of psychometric properties of the mini-mental
state examination and the standardized mini-mental
state examination: implications for clinical practice.
Applied Nursing Research, 13(4):209–213.
Sosin, D. M., Sniezek, J. E., and Thurman, D. J. (1996). In-
cidence of mild and moderate brain injury in the Uni-
ted States, 1991. Brain Injury, 10(1):47–54.
Spreen, O. and Risser, A. H. (2003). Assessment of Aphasia.
Oxford University Press.
Umphred, D. (2007). Neurological Rehabilitation. Neuro-
logical Rehabilitation (Umphred) Series. Mosby Else-
vier.
U.S. Department of Health and Human Services (2003). HI-
PAA privacy rule and public health. Guidance from
CDC and the U.S. Department of Health and Human
Services. MMWR Supplements, 52:1–17.
Yancheva, M., Fraser, K., and Rudzicz, F. (2015). Using lin-
guistic features longitudinally to predict clinical sco-
res for alzheimers disease and related dementias. In
6th Workshop on Speech and Language Processing for
Assistive Technologies (SLPAT), pages 134–139. sn.
APPENDIX
Initialization parameters of the estimators:
from skl e arn . lin e ar_ m ode l import
ElasticNet , Lasso , Ridge ,
Li n e ar R e gr e s si o n
from lig h tni n g . r egr e ssi o n import
CDRegresso r , L i nea r SVR
from skl e arn . svm im port SVR , Nu SVR
" L i nea r Reg r ess i on ":
Li n e ar R e gr e s si o n ()
" Ela s tic _ Net ": E las t icN e t ( ma x _ it e r
= int (1 e3 ) )
" Rid g e_C D ": C D R eg r e ss o r ( m a x_i t er
=200 , tol =1 e -3 , loss = ’ squared ’,
pe n a lt y = ’ l2 ’)
" Las s o_C D ": C D R eg r e ss o r ( m a x_i t er
=200 , tol =1 e -3 , loss = ’ squared ’,
pe n a lt y = ’ l1 ’, d eb i a si n g = Tru e )
" Lasso ": Lasso ()
" Ridge ": Ridge ()
" eSVR ": S VR ( k ernel = ’ l ine ar ’)
" NuSVR ": NuSVR ( kernel = ’ linear ’)
" lig h tSV R ": L i n ea r S VR ()
Grid search parameters of the estimators:
" L i nea r Reg r ess i on ":{" n orm a liz e ":[
False , Tr ue ], " fit _ int e rce p t ":[
True , False ]}
" Ela s tic _ Net ": {" alpha ": np .
lo g s pa c e ( -2 , 4 , 5) , " l 1_r a tio ":
10** np . array ([ -3 , -2 , -1, np .
log10 ( .5) , np . log 10 (.9) ]) }
" Rid g e_C D ": {" a lph a ": np . lo g spa c e
( -2 , 2 , 5) }