Camporesi, C., Popelar, A., Kallmann, M., and Han, J.
(2014). Motion parameterization and adaptation stra-
tegies for virtual therapists. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 8637 LNAI:99–108.
Chandra, H., Oakley, I., and Silva, H. (2012). Designing
to support prescribed home exercises. Proceedings of
the 7th Nordic Conference on Human-Computer In-
teraction Making Sense Through Design - NordiCHI
’12, page 607.
Crocher, V., Hur, P., and Seo, N. J. (2013). Low-cost virtual
rehabilitation games: House of quality to meet patient
expectations. 2013 International Conference on Vir-
tual Rehabilitation, ICVR 2013, pages 94–100.
Da Gama, A., Fallavollita, P., Teichrieb, V., and Navab, N.
(2015). Motor Rehabilitation Using Kinect: A Syste-
matic Review. Games for Health Journal, 4(2):123–
135.
Da Gama, A. E. F., Chaves, T. M., Figueiredo, L. S., Baltar,
A., Meng, M., Navab, N., Teichrieb, V., and Fallavol-
lita, P. (2016). MirrARbilitation: A clinically-related
gesture recognition interactive tool for an AR rehabi-
litation system. Computer Methods and Programs in
Biomedicine, 135(July):105–114.
Gal, N., Andrei, D., Nemes¸ D. I., Nd
ˇ
as¸an, E., and Stoicu-
Tivadar, V. (2015). A Kinect based intelligent e-
rehabilitation system in physical therapy. Studies in
Health Technology and Informatics, 210:489–493.
Khademi, M., Mousavi Hondori, H., McKenzie, A., Doda-
kian, L., Lopes, C. V., and Cramer, S. C. (2014). Free-
hand interaction with leap motion controller for stroke
rehabilitation. Proceedings of the extended abstracts
of the 32nd annual ACM conference on Human fac-
tors in computing systems - CHI EA ’14, (November
2015):1663–1668.
Kowsar, Y., Moshtaghi, M., Velloso, E., Kulik, L., and
Leckie, C. (2016). Detecting Unseen Anomalies in
Weight Training Exercises. OzCHI Proceedings of the
28th Australian Conference on Computer-Human In-
teraction, pages 517–526.
Laerhoven, K. V. and Lo, B. (2004). Medical healthcare
monitoring with wearable and implantable sensors.
Proc. of the 3rd International Workshop on Ubiqui-
tous Computing for Healthcare Applications, (Janu-
ary):11.
Maclean, N., Pound, P., Wolfe, C., and Rudd, A. (2000).
Qualitative analysis of stroke patients’ motivation for
rehabilitation. Bmj, 321(7268):1051–1054.
Martin-Moreno, J., Ruiz-Fernandez, D., Soriano-Paya, A.,
and Jesus Berenguer-Miralles, V. (2008). Monitoring
3D movements for the rehabilitation of joints in phy-
siotherapy. Conference proceedings : ... Annual Inter-
national Conference of the IEEE Engineering in Me-
dicine and Biology Society. IEEE Engineering in Me-
dicine and Biology Society. Conference, 2008:4836–9.
Mistry, J. B., Elmallah, R. D., Bhave, A., Chughtai, M.,
Cherian, J. J., McGinn, T., Harwin, S. F., and Mont,
M. A. (2016). Rehabilitative Guidelines after Total
Knee Arthroplasty: A Review. Journal of Knee Sur-
gery, 29(3):201–217.
Pachoulakis, I. and Tsilidi, D. (2016). Technology-assisted
Carpal Tunnel Syndrome Rehabilitation using serious
games: the Roller Ball example. Advances in Image
and Video Processing, (August 2016).
Pachoulakis, I., Xilourgos, N., Papadopoulos, N., and Ana-
lyti, A. (2015). A Kinect-based Physiotherapy and As-
sessment Platform for Parkinson ’ s disease Patients.
Physiotherapy, 2016.
Raten, A. (2013). Knieoperationen : Große regionale Un-
terschiede bei der Versorgung mit k
¨
unstlichen Knie-
gelenken.
Ruttkay, Z. and van Welbergen, H. (2008). Elbows Higher!
Performing, Observing and Correcting Exercises by a
Virtual Trainer. pages 409–416. Springer Verlag.
Su, C.-J. (2013). Personal Rehabilitation Exercise Assistant
with Kinect and Dynamic Time Warping. Internatio-
nal Journal of Information and Education Technology,
3(4):448.
Su, C.-J., Chiang, C.-Y., and Huang, J.-Y. (2014). Kinect-
enabled home-based rehabilitation system using Dy-
namic Time Warping and fuzzy logic. Applied Soft
Computing, 22(November 2010):652–666.
Velloso, E., Bulling, A., and Gellersen, H. (2013a). Moti-
onMA: motion modelling and analysis by demonstra-
tion. CHI ’13: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, page 1309.
Velloso, E., Bulling, A., Gellersen, H., Ugulino, W., and
Fuks, H. (2013b). Qualitative activity recognition of
weight lifting exercises. Proceeding AH ’13 Procee-
dings of the 4th Augmented Human International Con-
ference, pages 116–123.
Velloso, E., Carter, M., Newn, J., Esteves, A., Clarke,
C., and Gellersen, H. (2017). Motion Correlation.
ACM Transactions on Computer-Human Interaction,
24(3):1–35.
Yu, W., Vuong, C., and Ingalls, T. (2011). An Interactive
Multimedia System for Parkinson s Patient Rehabili-
tation. Virtual and Mixed Reality - Systems and Appli-
cations, Part II, HCI 2011, pages 129–137.
Zhao, W., Feng, H., Lun, R., Espy, D. D., and Reinthal,
M. A. (2014a). A Kinect-based rehabilitation exercise
monitoring and guidance system. Proceedings of the
IEEE International Conference on Software Engineer-
ing and Service Sciences, ICSESS, pages 762–765.
Zhao, W., Lun, R., Espy, D. D., Ann Reinthal, M., and
Reinthal, M. A. (2014b). Realtime Motion Asses-
sment For Rehabilitation Exercises: Integration Of
Kinematic Modeling With Fuzzy Inference. Journal
of Artificial Intelligence and Soft Computing Rese-
arch, 4(4):267–285.
Dynamic Movement Monitoring
191