Bause, F. (1993). Queueing petri nets-a formalism for the
combined qualitative and quantitative analysis of sys-
tems. In Proceedings of the 5th International Work-
shop on Petri Nets and Performance Models, pages 14
– 23.
Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S.
(1998). Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Com-
puter Science Applications. Wiley-Interscience, New
York.
Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).
Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA.
Brosig, F., Kounev, S., and Krogmann, K. (2009). Auto-
mated Extraction of Palladio Component Models from
Running Enterprise Java Applications. In VALUE-
TOOLS ’09, pages 1–10.
Bryson, A. E. and Ho, Y.-C. (1969). Applied optimal con-
trol : optimization, estimation, and control.
Casale, G., Cremonesi, P., and Turrin, R. (2007). How to
Select Significant Workloads in Performance Models.
In CMG Conference Proceedings.
Casale, G., Cremonesi, P., and Turrin, R. (2008). Robust
Workload Estimation in Queueing Network Perfor-
mance Models. In Euromicro PDP 2018, pages 183–
187.
Cybenko, G. (1988). Continuous valued neural networks
with two hidden layers are sufficient. Technical re-
port, Department of Computer Science, Tufts Univer-
sity, Medford, MA.
Grohmann, J. (2016). Reliable Resource Demand Estima-
tion. Master Thesis, University of W
¨
urzburg.
Grohmann, J., Herbst, N., Spinner, S., and Kounev, S.
(2017). Self-Tuning Resource Demand Estimation. In
IEEE ICAC 2017.
Joanes, D. and Gill, C. (1998). Comparing measures
of sample skewness and kurtosis. Journal of the
Royal Statistical Society: Series D (The Statistician),
47(1):183–189.
Kounev, S., Huber, N., Brosig, F., and Zhu, X. (2016).
A Model-Based Approach to Designing Self-Aware
IT Systems and Infrastructures. IEEE Computer,
49(7):53–61.
Kraft, S., Pacheco-Sanchez, S., Casale, G., and Dawson,
S. (2009). Estimating service resource consumption
from response time measurements. In VALUETOOLS
’09, pages 1–10.
Kumar, D., Tantawi, A., and Zhang, L. (2009). Real-time
performance modeling for adaptive software systems.
In VALUETOOLS ’09, pages 1–10.
Liu, Z., Wynter, L., Xia, C. H., and Zhang, F. (2006). Pa-
rameter inference of queueing models for IT systems
using end-to-end measurements. Perform. Evaluation,
63(1):36–60.
Menasc
´
e, D. (2008). Computing missing service demand
parameters for performance models. In CMG Confer-
ence Proceedings, pages 241–248.
Menasc
´
e, D. A., Dowdy, L. W., and Almeida, V. A. F.
(2004). Performance by Design: Computer Capac-
ity Planning By Example. Prentice Hall PTR, Upper
Saddle River, NJ, USA.
Pacifici, G., Segmuller, W., Spreitzer, M., and Tantawi, A.
(2008). CPU demand for web serving: Measurement
analysis and dynamic estimation. Perform. Evalua-
tion, 65(6-7):531–553.
Rolia, J. and Vetland, V. (1995). Parameter estimation
for performance models of distributed application sys-
tems. In CASCON ’95, page 54. IBM Press.
Rolia, J. and Vetland, V. (1998). Correlating resource de-
mand information with ARM data for application ser-
vices. In Proceedings of the 1st international work-
shop on Software and performance, pages 219–230.
ACM.
Russell, S. and Norvig, P. (2009). Artificial Intelligence:
A Modern Approach (3rd Edition). Prentice Hall, 3
edition.
Sharma, A. B., Bhagwan, R., Choudhury, M., Golubchik,
L., Govindan, R., and Voelker, G. M. (2008). Auto-
matic request categorization in internet services. SIG-
METRICS Perform. Eval. Rev., 36:16–25.
Spinner, S., Casale, G., Brosig, F., and Kounev, S. (2015).
Evaluating Approaches to Resource Demand Estima-
tion. Perform. Evaluation, 92:51 – 71.
Spinner, S., Casale, G., Zhu, X., and Kounev, S. (2014).
Librede: A library for resource demand estimation.
In ACM/SPEC ICPE 2014, ICPE ’14, pages 227–228,
New York, NY, USA. ACM.
Stewart, C., Kelly, T., and Zhang, A. (2007). Exploiting
nonstationarity for performance prediction. SIGOPS
Oper. Syst. Rev., 41:31–44.
Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., and
Zhong, H. (2012). Application-Level CPU Consump-
tion Estimation: Towards Performance Isolation of
Multi-tenancy Web Applications. In IEEE CLOUD
2012, pages 439 –446.
Wang, W., Huang, X., Song, Y., Zhang, W., Wei, J., Zhong,
H., and Huang, T. (2011). A statistical approach for
estimating cpu consumption in shared java middle-
ware server. In IEEE COMPSAC, 2011, pages 541–
546. IEEE.
Wang, W., P
´
erez, J. F., and Casale, G. (2015). Filling the
gap: A tool to automate parameter estimation for soft-
ware performance models. In Proceedings of QUDOS
2015, pages 31–32, New York, NY, USA. ACM.
Westfall, P. H. (2014). Kurtosis as peakedness, 1905–2014.
rip. The American Statistician, 68(3):191–195.
Zheng, T., Woodside, C., and Litoiu, M. (2008). Perfor-
mance Model Estimation and Tracking Using Optimal
Filters. IEEE TSE, 34(3):391–406.
Zheng, T., Yang, J., Woodside, M., Litoiu, M., and Iszlai, G.
(2005). Tracking time-varying parameters in software
systems with extended Kalman filters. In CASCON
’05, pages 334–345. IBM Press.
CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science
480