Apache Kafka, 2018. Apache Kafka, A distributed
streaming platform. Available online: https://kafka.
apache.org/
Apache Storm, 2018. Available online:
http://storm.apache.org/.
Bonab, B. A., and Bushehrian, O., 2015. A semi-
automated reverse engineering method to recommend
the best migration-to-cloud strategy. In 2015
International Symposium on Computer Science and
Software Engineering (CSSE), Aug. 2015, pp. 1–7.
Bryant, R., Tumanov, A., Irzak, O., Scannell, A., Joshi,
K., Hiltunen, M., Lagar-Cavilla, A., and de Lara, E.,
2011. Kaleidoscope: Cloud micro-elasticity via vm
state coloring. In Proceedings of the Sixth Conference
on Computer Systems, ser. EuroSys ’11, ACM, 2011,
pp. 273–286.
Burns, E., 2013. Hadoop still too slow for real-time
analysisapplications?. Available online: http://search
businessanalytics.techtarget.com/feature/Hadoop-still-
too-slow-for-real-time-analysis-applications.
Cavalcante, E., Batista, T., Lopes, F., Almeida, A., de
Moura, A. L., Rodriguez, N., Alves, G., Delicato, F.,
and Pires, P., 2013.Autonomous adaptation of cloud
applications. In Distributed Applications and Inter-
operable Systems: 13th IFIP WG 6.1 International
Conference, DAIS 2013. Springer, 2013, pp. 175–180.
CIMI, ISO/IEC JTC 1, 2013.Cloud infrastructure
management interface (cimi) model and restful http-
based protocol, ISO/IEC19831. In ISO Standards
Catalogue.
Comi, A., Fotia, L., Messina, F., Pappalardo, G., Rosaci,
D., and Sarné,G.M. L.,2015. An evolutionary
approach for cloud learning agents in multi-cloud
distributed contexts. In 2015 IEEE 24th International
Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises, Jun. 2015, pp. 99–104.
Dutta, S., Gera, S., Verma., A., and Viswanathan, B.,2012.
SmartScale: Automatic application scaling in
enterprise clouds. In 2012 IEEE Fifth International
Conference on Cloud Computing, IEEE, pp. 221–228
(2012). doi:10.1109/CLOUD.2012.12.
Fang, W., Lu, Z., Wu, J., Cao, Z., 2012. RPPS: a novel
resource prediction and provisioning scheme in cloud
data center. In 2012 IEEE Ninth International
Conference on Services Computing, IEEE, pp. 609–
616 (2012). doi:10.1109/SCC.2012.47.
Gandhi, A., Dube, P., Karve, A., Kochut, A. and Zhang,
L., 2014. Adaptive, model-driven autoscaling for
cloud applications. In 11
th
International Conference on
Autonomic Computing (ICAC14), USENIX, 2014,
pp.57–64.
Gholami, M. F., Daneshgar, F., Low, G., and Beydoun, G.,
2016. Cloud migration process-a survey, evaluation
framework, and open challenges. In Journal of
Systems and Software, vol. 120, no. C, pp. 31–69, Oct.
2016.
Hilton, M., Christi, A., Dig, D., Moskal, M., Burckhardt,
S., and Tillmann, N., 2014. Refactoring local to cloud
data types for mobile apps. In Proceedings of the 1st
International Conference on Mobile Software
Engineering and Systems, ser. MOBILESoft 2014,
ACM, 2014, pp. 83–92.
Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., and
Lawall, J., 2009. Entropy: A consolidation manager
for clusters. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, ser. VEE ’09, ACM,
2009, pp. 41–50.
Inese, S. Inese, P., Solvita, B., Janis, G., Egils, M., and
Edgars, O., 2015. Decomposition of enterprise
application: A Systematic literature review and
research outlook. In Information Technology and
Management Science, vol. 18, no. 1, pp. 30–36, 2015.
Inzinger, C., Hummer, W., Satzger, B., Leitner, P., and
Dustdar, S.,2014. Generic event-based monitoring and
adaptation methodology for heterogeneous distributed
systems. In Software: Practice and Experience, vol.
44, no. 7, pp. 805–822, 2014.
Inzinger, C., Satzger, B., Leitner, P., Hummer, W., and S.
Dustdar, 2013. Model-based adaptation of cloud
computing applications. In Proceedings of the 1st
International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD
2013), 2013, pp. 351–355.
Jamshidi, P. Pahl, C., and Mendonça, N. C., 2016. Pattern-
based multi-cloud architecture migration. In Software:
Practice and Experience, 2016.
Jennings, B. and Stadler, R, 2015. Resource management
in clouds: Survey and research challenges. In Journal
of Network and Systems Management, vol. 23, no. 3,
pp. 567–619, Jul. 2015.
Keras, 2018. Keras: The Python Deep Learning library.
Available online: https://keras.io/
Koto, A., Yamada, H., Ohmura, K., Kono, K., 2012.
Towards unobtrusive VM live migration for cloud
computing platforms. In Proceedings of the Asia-
Pacific Workshop on Systems: ACM; 2012. p. 7.
Kwon, Y.-W., and Tilevich, E.,2014. Cloud refactoring:
Automated transitioning to cloud-based services. In
Automated Software Eng., vol. 21, no. 3, pp. 345–372,
Sep. 2014.
Kyriazis, D, 2013. Cloud computing service level
agreements-exploitation of research results. In
Technical report European Commission. Available
online: http://ec.europa.eu/information_society/news
room/cf/dae/document.cfm?doc_id=2496, 2013.
Lorido-Botran, T., Miguel-Alonso, J., and Lozano, J. A.,
2014. A review of auto-scaling techniques for elastic
applications in cloud environments. In Journal of Grid
Computing, vol.12, no.4, pp.559–592, Dec.2014.
Michael, M. , Moreira, J. E., Shiloach D., and Wisniewski,
R. W.,2007. Scale-up x Scale-out: A Case Study using
Nutch/Lucene. In 2007 IEEE International Parallel
and Distributed Processing Symposium, Long Beach,
CA, 2007, pp. 1-8. doi: 10.1109/IPDPS.2007.370631.
Nguyen, H., Shen, Z., Gu, X., Subbiah, S. and Wilkes,
J.,2013. Agile: Elastic distributed resource scaling for
infrastructure-as-a-service. In Proceedings of the 10th
International Conference on Autonomic Computing
(ICAC 13), USENIX, 2013.