Placement for Geo-distributed Cloud Services. In
NSDI.
Arthur, D. and Vassilvitskii, S. (2007). k-means++: The
Advantages of Careful Seeding. In SODA, pages
1027–1035.
Catalyurek, U. V. (2011). PaToH (Partitioning Tool for
Hypergraphs). http://bmi.osu.edu/umit/PaToH/ man-
ual.pdf.
Catalyurek, U. V., Boman, E. G., Devine, K. D.,
Bozdag, D., Heaphy, R., and Riesen, L. A. (2007).
Hypergraph-based Dynamic Load Balancing for
Adaptive Scientific Computations. In IPDPS, pages
1–11.
Chervenak, A., Deelman, E., Livny, M., Su, M., Schuler,
R., Bharathi, S., Mehta, G., and Vahi, K. (2007). Data
Placement for Scientific Applications in Distributed
Environments. In GRID.
Deerwester, S. C., Ziff, D. A., and Waclena, K. (1990).
An Architecture for Full Text Retrieval Systems. In
DEXA, pages 22–29.
Ebrahimi, M., Mohan, A., Kashlev, A., and Lu, S. (2015).
BDAP: A Big Data Placement Strategy for Cloud-
Based Scientific Workflows. In BigDataService,
pages 105–114.
Gibson, D., Kleinberg, J., and Raghavan, P. (1998). Infer-
ring Web Communities from Link Topology. In HY-
PERTEXT, pages 225–234.
Golab, L., Hadjieleftheriou, M., Karloff, H., and Saha,
B. (2014). Distributed Data Placement to Minimize
Communication Costs via Graph Partitioning. In SS-
DBM, pages 1–12.
Halko, N., Martinsson, P., and Tropp, J. A. (2011). Find-
ing Structure with Randomness: Probabilistic Algo-
rithms for Constructing Approximate Matrix Decom-
positions. SIAM Review, 53(2):217–288.
Han, S., Kim, B., Han, J., K.Kim, and Song, J. (2017).
Adaptive Data Placement for Improving Performance
of Online Social Network Services in a Multicloud
Environment. In Scientific Programming, pages 1–17.
Huguenin, K., Kermarrec, A. M., Kloudas, K., and Ta
¨
ıani,
F. (2012). Content and Geographical Locality in User-
generated Content Sharing Systems. In NOSSDAV,
pages 77–82.
Jiao, L., Li, J., Du, W., and Fu, X. (2014). Multi-objective
data placement for multi-cloud socially aware ser-
vices. In INFOCOM, pages 28–36.
Kayaaslan, E., Cambazoglu, B. B., and Aykanat, C. (2013).
Document Replication Strategies for Geographically
Distributed Web Search Engines. Inf. Process. Man-
age., 49(1):51–66.
Li, X., Zhang, L., Wu, Y., Liu, X., Zhu, E., Yi, H., Wang, F.,
Zhang, C., and Yang, Y. (2017). A Novel Workflow-
Level Data Placement Strategy for Data-Sharing Sci-
entific Cloud Workflows. IEEE TSC, PP(99):1–14.
Liu, X. and Datta, A. (2011). Towards Intelligent Data
Placement for Scientific Workflows in Collaborative
Cloud Environment. In IPDPSW, pages 1052–1061.
Meila, M. and Shi, J. (2001). Learning Segmentation by
Random Walks. In NIPS, pages 873–879.
Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On Spec-
tral Clustering: Analysis and an Algorithm. In NIPS,
pages 849–856.
Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee,
H., Li, H. C., McElroy, R., Paleczny, M., Peek, D.,
Saab, P., Stafford, D., Tung, T., and Venkataramani,
V. (2013). Scaling Memcache at Facebook. In NSDI,
pages 385–398.
Quamar, A., Kumar, K. A., and Deshpande, A. (2013).
SWORD: Scalable Workload-aware Data Placement
for Transactional Workloads. In EDBT, pages 430–
441.
Rochman, Y., Levy, H., and Brosh, E. (2013). Re-
source placement and assignment in distributed net-
work topologies. In INFOCOM, pages 1914–1922.
Shankaranarayanan, P. N., Sivakumar, A., Rao, S., and
Tawarmalani, M. (2014). Performance Sensitive
Replication in Geo-distributed Cloud Datastores. In
DSN, pages 240–251.
Shi, J. and Malik, J. (2000). Normalized Cuts and Image
Segmentation. PAMI, 22(8):888–905.
Spielmat, D. A. (1996). Spectral Partitioning Works: Planar
Graphs and Finite Element Meshes. In FOCS, pages
96–105.
Yu, B. and Pan, J. (2015). Location-aware associated data
placement for geo-distributed data-intensive applica-
tions. In 2015 IEEE Conference on Computer Com-
munications (INFOCOM), pages 603–611.
Yu, B. and Pan, J. (2016). Sketch-based data placement
among geo-distributed datacenters for cloud storages.
In INFOCOM, pages 1–9.
Yu, B. and Pan, J. (2017). A Framework of Hypergraph-
based Data Placement among Geo-distributed Data-
centers. IEEE TSC, PP(99):1–14.
Yuan, D., Yang, Y., Liu, X., and Chen, J. (2010). A
data placement strategy in scientific cloud workflows.
FGCS, 26(8):1200 – 1214.
Zhang, J., Chen, J., Luo, J., and Song, A. (2016). Effi-
cient location-aware data placement for data-intensive
applications in geo-distributed scientific data centers.
Tsinghua Science and Technology, 21(5):471–481.
Zhou, D., Huang, J., and Sch
¨
olkopf, B. (2006). Learn-
ing with Hypergraphs: Clustering, Classification, and
Embedding. In NIPS, pages 1601–1608.
CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science
508