REFERENCES
Ackermann, L., Sch
¨
onig, S., and Jablonski, S. (2016).
Towards simulation- and mining-based translation of
resource-aware process models. In Business Pro-
cess Management Workshops - BPM 2016 Interna-
tional Workshops, Rio de Janeiro, Brazil, September
19, 2016, Revised Papers, pages 359–371.
Becker, J., Breuker, D., Delfmann, P., and Matzner, M.
(2014). Designing and implementing a framework
for event-based predictive modelling of business pro-
cesses. In EMISA, pages 71–84.
Bishop, C. M. (1995). Neural networks for pattern recog-
nition. Oxford university press.
Bose, S., Scimone, S., Sriraman, N., Duan, Z., Bernstein,
A., Lewis, P., and Grosu, R. (2012). Business process
automation. US Patent 8,332,864.
Breuker, D., Matzner, M., Delfmann, P., and Becker, J.
(2016). Comprehensible predictive models for busi-
ness processes. MIS Quarterly, 40(4):1009–1034.
Chollet, F. (2015). Keras. https://github.com/fchollet/keras.
Evermann, J., Rehse, J.-R., and Fettke, P. (2017). Predict-
ing process behaviour using deep learning. Decision
Support Systems.
Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional lstm and
other neural network architectures. Neural Networks,
18(5):602–610.
G
¨
unther, C., Sch
¨
onig, S., and Jablonski, S. (2012). Dy-
namic guidance enhancement in workflow manage-
ment systems. In Proceedings of the ACM Symposium
on Applied Computing, SAC 2012, Riva, Trento, Italy,
March 26-30, 2012, pages 1717–1719.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Leontjeva, A., Conforti, R., Di Francescomarino, C., Du-
mas, M., and Maggi, F. M. (2015). Complex sym-
bolic sequence encodings for predictive monitoring of
business processes. In BPM, pages 297–313.
Maggi, F. M., Di Francescomarino, C., Dumas, M., and
Ghidini, C. (2014). Predictive monitoring of business
processes. In CAISE, pages 457–472. Springer.
Metzger, A., Leitner, P., Ivanovi
´
c, D., Schmieders, E.,
Franklin, R., Carro, M., Dustdar, S., and Pohl, K.
(2015). Comparing and combining predictive busi-
ness process monitoring techniques. Transactions on
Systems, Man, and Cybernetics: Systems, 45(2):276–
290.
Pika, A., van der Aalst, W. M., Fidge, C. J., ter Hofstede,
A. H., and Wynn, M. T. (2012). Predicting deadline
tansgressions using event logs. BPM.
Polato, M., Sperduti, A., Burattin, A., and de Leoni,
M. (2016). Time and activity sequence predic-
tion of business process instances. arXiv preprint
arXiv:1602.07566.
Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural Networks, 61:85 – 117.
Sch
¨
onig, S., Di Ciccio, C., Maggi, F. M., and Mendling,
J. (2016). Discovery of multi-perspective declara-
tive process models. In Service-Oriented Comput-
ing - 14th International Conference, ICSOC 2016,
Banff, AB, Canada, October 10-13, 2016, Proceed-
ings, pages 87–103.
Senderovich, A., Weidlich, M., Gal, A., and Mandelbaum,
A. (2014). Queue mining–predicting delays in service
processes. In CAISE.
Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(1):1929–1958.
Sturm, C., Sch
¨
onig, S., and Di Ciccio, C. (2017). Dis-
tributed multi-perspective declare discovery. In Pro-
ceedings of the BPM Demo Track and BPM Disser-
tation Award co-located with 15th International Con-
ference on Business Process Modeling (BPM 2017),
Barcelona, Spain, September 13, 2017.
Tax, N., Verenich, I., La Rosa, M., and Dumas, M. (2016).
Predictive business process monitoring with lstm neu-
ral networks. arXiv preprint arXiv:1612.02130.
Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for ma-
chine learning, 4(2).
van der Aalst, W. (2011). Process mining: discovery,
conformance and enhancement of business processes.
Springer-Verlag Berlin Heidelberg.
Van der Aalst, W. M., Schonenberg, M. H., and Song, M.
(2011). Time prediction based on process mining. In-
formation Systems, 36(2):450–475.
Van Dongen, B. (2017). Bpi challenge 2017 - offer log.
van Dongen, B., Crooy, R., and Van der Aalst, W. (2008).
Cycle time prediction: When will this case finally be
finished? CoopIS, pages 319–336.
Verbeek, E., Buijs, J., van Dongen, B., and van der Aalst, W.
(2011a). XES, xESame, and ProM 6. In Information
Systems Evolution, volume 72, pages 60–75.
Verbeek, E., Buijs, J., van Dongen, B., and van der Aalst, W.
(2011b). XES, xESame, and ProM 6. In Information
Systems Evolution, pages 60–75.
Deep Learning Process Prediction with Discrete and Continuous Data Features
319