
R2SMA - A Middleware Architecture to Access Legacy Enterprise Web
Services using Lightweight REST APIs

Jan Königsberger and Bernhard Mitschang
Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany

Keywords: REST, API, SOAP, Web Service, SOA, Enterprise SOA, Architecture.

Abstract: This paper presents the SOAP-to-REST Middleware Architecture which provides an abstraction layer for
conventional web services. This layer semi-automatically creates REST API (REpresentational State Transfer)
proxies for existing enterprise web services that allows companies to provide flexible and lightweight access
to exiting web services. Therefore, REST APIs can be offered for existing web services without the need to
adapt them, which allows for flexible and fast integration scenarios. The architecture also provides additional
enterprise-grade functionality such as caching and security.

1 INTRODUCTION

Service-oriented architectures have been the method
of choice for enterprise application integration in re-
cent years. Lately, the focus has shifted from large en-
terprise applications providing ”conventional”, usu-
ally SOAP-based, web services to a more diverse and
heterogeneous integration landscape. This includes
mobile applications, microservices and devices as
part of the (Industrial) Internet of Things (IIoT).

While conventional web services provide many
benefits and possibilities required for adoption within
an enterprise environment, like reusability, ease of
integration or fast adaptability, companies are now
faced with new technological challenges. New and
more lightweight use cases from the mobile and
IIoT context also require more lightweight integra-
tion technologies like REST (REpresentational State
Transfer, (Fielding, 2000)), which allows for a fast
and flexible access to resources and information. At
the same time new requirements emerge that ask for
the use of existing applications within those new use
cases. With the ongoing digitalization, companies
also start to expand into new business areas, for exam-
ple by providing access to their services to outside de-
velopers via pay-per-use scenarios. Therefore, com-
panies need to find a way to make a large, already ex-
isting service portfolio available via more lightweight
protocols. The development of new services and APIs
is, of course, a huge effort. Aside from the develop-
ment of new interfaces, the applications also have to
be tested and redeployed, which may lead to unde-

sired and costly downtimes.
To help alleviate these challenges, this paper

presents the SOAP-to-REST Middleware Architec-
ture. The architecture abstracts from the existing
legacy service layer and provides a semi-automatic
way to create REST proxies for existing conventional
web services, without the need to adapt the existing
services. Current approaches in this area are mostly
manual processes and lack certain enterprise-grade
functionality such as security and caching.

2 REQUIREMENTS

This paper aims to design an architecture that sup-
ports companies in providing RESTful access to their
legacy SOA infrastructure. From an enterprise view-
point certain requirements have to be fulfilled by the
architecture to be applicable in practice, especially
regarding security concerns. This section discusses
those requirements in detail.

R1: Reuse of Existing Services. Having relied on
service-oriented Architectures (SOA) for some time,
companies usually have a large number of conven-
tional web services available and integrated into their
everyday processes. To have all of these services
ported to RESTful APIs by application developers
would require enormous efforts in time and money,
both of which are notoriously scarce resources within
an enterprise. This makes it necessary to find a way to

704
Königsberger, J. and Mitschang, B.
R2SMA - A Middleware Architecture to Access Legacy Enterprise Web Services using Lightweight REST APIs.
DOI: 10.5220/0006785407040711
In Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018), pages 704-711
ISBN: 978-989-758-298-1
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



provide RESTful access to those services without the
need for each application to develop new REST APIs
and without the additional effort that comes with test-
ing and redeployment of all applications.

R2: Flexible and Quick Access. When providing
mobile access to services, a fast time to market is im-
portant. Development cycles in the ”mobile world”
run a lot faster than in the slower changing enterprise
world. Therefore users expect regular updates and
quick improvements. Especially large companies of-
ten struggle initially to meet these expectations.

Historically, companies have developed applica-
tions in relatively long release-cycles, for example
only having one or two releases per application and
year. More agile development models such as Scrum
and DevOps are only slowly finding their way into
enterprise software development. Therefore, an archi-
tecture is necessary that allows to handle both the fast
paced changes in RESTful APIs as well as those of
the slower back-end applications. McKinsey coined
the term two-speed architecture (Bossert et al., 2014)
to describe such architectures. This need for flexibil-
ity and fast access to existing services via lightweight
interfaces therefore requires the decoupling of APIs
from the back-end applications.

R3: Reliability. Reliability is always one of the
most important goals within enterprise architectures.
With our goal of providing RESTful access to existing
SOAP-based web services, reliability can be viewed
in three different dimensions:

(1) REST doesn’t provide reliable messaging as
we know it from conventional web services, which
provide reliable delivery on the transport level, e.g.
through WS-ReliableMessaging1. Indeed, this is not
necessarily required and also could be handled within
the business logic.

(2) Access to the services has to be reliably avail-
able, i.e. services should never be offline or not ac-
cessible, for example by setting up fail-over systems.

(3) Consumers accessing RESTful services ex-
pect the interfaces to adhere to the REST constraints.
This includes the correct behavior of a system when
querying it using specific HTTP methods. This style
also differs from what developers know from conven-
tional web services. The main difference is that con-
ventional web services are operation-based, whereas
REST APIs are resource-centric.

1http://docs.oasis-open.org/wsrx/wsrm/200702/wsrm-
1.2-spec-os.html

R4: Security. Within an enterprise context there
usually are restrictions and security mechanisms in
place to prevent unauthorized users to access data
and information. In case of web services, this usu-
ally means authentication mechanisms such as user
name/password or API keys. These security require-
ments also have to be fulfilled by a REST proxy.
Therefore, the proxies have to be tied into the over-
all enterprise security architecture of a company and
appropriate authentication information has to be prop-
agated to the back-end services.

R5: Versioning. When creating and providing web
services to users, these services usually will change
over time. If the functional range of an application is
extended or modified, these changes usually also need
to be reflected in the service interfaces. Adapting con-
sumer applications to a new interface typically takes
some time and it may not be possible to immediately
switch to a new interface version for all consumers.
This makes it necessary that different versions of an
interface might exist in parallel. It also might be nec-
essary to only change the RESTful interface of a ser-
vice for some reason, for example to implement new
architectural guidelines. Such changes should ideally
be handled without any modification of the underly-
ing back-end application.

3 RELATED WORK

We did a comprehensive analysis of current ap-
proaches for RESTful access to conventional web ser-
vices. Work in this area can be clustered into two ma-
jor areas:

• Scientific research papers, which mostly illumi-
nate the differences between conventional web
services and REST APIs (e.g. (Pautasso et al.,
2008)). There is very little work researching
RESTful access to conventional web services.

• API middleware tools and corresponding indus-
try whitepapers: There are some products, mainly
API middleware solutions, which already support
the creation of REST to SOAP proxies to some
extent.

The relevant scientific papers are mainly mo-
tivated from a workflow-oriented viewpoint. In
(de Giorgio et al., 2010) the authors look into how
both SOAP-based and RESTful web services can be
used within BPEL workflows. They describe a way
to semantically map the description of both services
types, allowing them to switch between a SOAP-
based and a RESTful web service at runtime.

R2SMA - A Middleware Architecture to Access Legacy Enterprise Web Services using Lightweight REST APIs

705



The reverse direction to our approach is presented
in (Peng et al., 2009). Their SOAP2REST frame-
work allows the wrapping of RESTful web services
as SOAP-based services to utilize them within BPEL
processes. The Framework relies on a WADL de-
scription (Web Application Description Language) of
the RESTful service to generate a SOAP proxy.

Apigee (Apigee, 2014) provides the users of its
API platform with a wizard that helps them to con-
vert SOAP-based into RESTful web services. To
achieve this, the wizard utilizes the WSDL descrip-
tion (Web Service Description Language2) of the ser-
vice to generate a skeleton for the RESTful service
and lets users define the required REST parameters
like resource URIs and HTTP method. In comparison
to our approach, functionality for enterprise-readiness
such as caching or security-propagation don’t seem to
be available.

Mulesoft (Agrawal, 2015) describes a mostly
manual process to create a REST proxy. After defin-
ing the desired REST description using RAML, the
vendor’s Anypoint Studio is used to create a message
transformation for a HTTP query to a SOAP request.

To summarize, none of the existing solutions fully
address the requirements we presented in Section 2.
We therefore present our REST-to-SOAP Middleware
Architecture in the following sections.

4 REST-to-SOAP MIDDLEWARE
ARCHITECTURE

Conventional web services have many benefits that
make them the ideal technology to integrate enter-
prise applications. With the growing demand for
greater flexibility within enterprise architectures in re-
cent years, more lightweight technologies, such as
REST, have been integrated into these architectures.

The REST-to-SOAP Middleware Architecture
(R2SMA) we present in this section allows a company
to abstract existing conventional web services via a
middleware proxy that provides REST APIs for those
back-end services. Figure 1 shows the R2SMA. The
core functionality is handled by the REST-to-SOAP-
Proxy component, which provides REST endpoints
for the conventional web services to consumers. The
component also provides caching as well as transfor-
mation capability for REST requests. Existing web
services are provided via a middleware layer, like an
enterprise service bus, that is connected to the trans-
formation sub-component. The architecture is com-
pleted by an enterprise security gateway dealing with

2https://www.w3.org/TR/wsdl20/

authentication and authorization as well as a reposi-
tory component for interface management and proxy
generation.

4.1 Transformation

Each request to a REST API proxy triggers a subse-
quent request to a back-end web service, unless the
response is already stored in the cache (see next sec-
tion). This second request is completely transparent
to a service requester. The transformation compo-
nent translates a message from a REST-compatible
JSON representation into a data format understood
by the back-end service, usually SOAP. The specific
transformations and data models are defined during
the creation of a REST proxy service and are part of
its description document. The transformation compo-
nent also validates the data in the incoming requests to
make sure they can be mapped to the SOAP format. A
thorough validation is necessary, because JSON only
supports limited data types. For example: numbers
are not differentiated between integer and floating-
point values, which may lead to undesired behavior.

4.2 Caching

Caching is required to manage the load on back-end
systems and to provide faster response times. REST-
ful web services are in certain common usage sce-
narios required to process more requests than conven-
tional ones to achieve the same result. This is due to
the fact that REST operates on resources. Retrieving
a list of items and all their data following the REST
paradigm consists of 1) retrieve list of items and 2)
query each item (i.e. resource) separately for its in-
formation. This means the longer the list, the more
requests are necessary. Conventional services usually
return all items within a single response. Addition-
ally, REST supports content ranges, i.e. the requester
can define to only return a certain range of items from
a list. Without any caching mechanism this means
that if a requester splits the retrieval of a list contain-
ing 500 items into chunks of 50 items, 10 requests
are necessary to retrieve all items. In other words:
Each of the 10 requests is propagated to the underly-
ing back-end service, increasing the load.

The following sections discuss ways to design the
caching component for our architecture.

4.2.1 Cache Security

In any enterprise environment users oftentimes work
with highly sensitive data. This on the one hand ne-
cessitates that a cache is included in the overall secu-
rity concept, ensuring that users have only access to

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

706



Service Consumer

Back-end Services

REST-to-SOAP-Proxy

SOA Repository

Enterprise 
Security

Existing Middleware Layer/
Enterprise Service Bus

Transformation

Caching

Interface Management

Proxy-Generator

Se
cu

ri
ty

Security Orchestration …

A
u

th
e

n
ti

ca
ti

o
n

A
u

th
o

ri
za

ti
o

n

REST REST REST REST

T1 T2 T3 Tn

SOAP SOAP SOAP

C1 C2 Cn

BE1 BE2 BE3 BEn

RESTSOAP

Figure 1: REST-to-SOAP Middleware Architecture.

data they have permission on and data is only trans-
ferred securely. On the other hand, it might be re-
quired that certain extremely sensitive data is never
cached and only passed through the proxy. This of
course leads to the already mentioned higher load on
the back-end system, but in certain instances is worth
the trade-off for higher security.

4.2.2 Types of Caches

There are different types of caches that can be consid-
ered for our architecture:

1. a central, user-independent cache,

2. a user-based cache and

3. a session-based cache.

The central cache can be compared to a standard
HTTP cache that stores each requested resource once
and subsequently delivers it independently from the
identity of the requester. For services that are pub-
licly accessible without any authentication this option
would be the most obvious and efficient. In our case
this solution is not viable, as services in an enter-
prise environment allow access to sensitive data and
therefore require user authentication. A user-based
cache stores resources separately for each user. This
of course leads to increased storage requirements,
because the same resource may be cached multiple
times. To decrease the necessary storage space, the

time a resource is cached can be reduced if a session-
based cache is used. In this specialized version of
a user-based cache, resources are removed from the
cache as soon as a user’s session ends, which might
be significantly lower than the resources time-to-live.

4.2.3 Position of the Cache

Each response from a back-end service is translated
with the help of the transformation component into a
REST-compatible JSON format corresponding to the
defined data format. This allows for two positions
of the cache. It can either be located before or after
the transformation component, which also influences
how the cache operates.

If located before the transformation, the cached
data needs to be transformed again for each subse-
quent request, increasing the load on the proxy. To
prevent this, the cache can instead be placed after the
transformation, having the data already transformed
for subsequent requests. On the other hand, caching
the data before the transformation would allow to
reuse it for different types of requests, keeping the
cache size small. Because of the already discussed
security requirements, different requests have to be
answered at least once by a back-end service to guar-
antee that the requester indeed has the necessary au-
thorization. The use of cached responses is therefore
not possible, which requires us to position the cache
after the transformation in our architecture. There

R2SMA - A Middleware Architecture to Access Legacy Enterprise Web Services using Lightweight REST APIs

707



may of course be additional HTTP caches between
service consumer and the REST API. Those are part
of the underlying communication and network infras-
tructure and therefore are not part of our architecture.

4.3 HATEOAS and Hypermedia
Controls

One of the key concepts of a REST API is that it is
self-describing, i.e. it informs the user how the API
can be used and which operations are available on
a resource and what URIs have to be queried. This
concept is described by the term Hypermedia as the
Engine of Application State (HATEOAS) (Fielding,
2008). Therefore it is possible to use a REST APIs
without any prior knowledge about the interfaces and
possible operations as long as an entry URI is known.
Within enterprise environments this behavior is of-
ten undesired, because stability, and therefore clearly
defined interfaces, are preferred. Still, these aspects
have to be taken into consideration.

Our R2SMA supports, at a conceptual level, HA-
TEOAS and hypermedia controls. During generation
of a REST proxy the operations of a conventional web
service are matched onto resources that are then used
by the REST proxy. This in theory allows to deliver
URIs for subsequent requests and operations on a re-
source with each response.

4.4 Identity and Access Management

To secure access to the REST API proxies, the
R2SMA needs to support enterprise security features.
It does not itself authenticate users. Instead it propa-
gates login information such as user name-password-
combinations or single sign-on tokens to the back-end
services. The back-end services then authorize the re-
quests and return a result or in case authorization was
not successful return an appropriate error message.
Additionally, the R2SMA is also tied into enterprise
security to validate single sign-on tokens, for example
to access cached responses.

Conventional web services support a number of
advanced security mechanisms like the Web Services
Security specification 3 building on XML encryption
and XML signatures. For the realization of the REST
proxies it is necessary to build on security mecha-
nisms that are supported by both REST APIs and con-
ventional web services. The R2SMA relies on Secu-
rity Assertion Markup Language (SAML4) tokens for
that. Also feasible would be the use of HTTP basic

3https://www.oasisopen.org/standards#wssv1.1.1
4https://tools.ietf.org/html/rfc7522

authentication und propagation of the login informa-
tion to the back-end service.

4.5 Interface Management

The SOA repository is also responsible for the man-
agement of interface description documents, for both
REST APIs and conventional web services. For the
description of REST interfaces the R2SMA relies on
the OpenAPI standard (Open API Initiative, 2017).
OpenAPI has become widely used in the last few
years and is supported by large companies such as Mi-
crosoft, Google and Atlassian.

Description documents are provided by the repos-
itory. Users can access them to integrate the services
into their applications. The repository also handles
the interfaces’ life cycle and versions. This for ex-
ample includes notification of users about upcoming
changes to interfaces

4.6 Proxy Generator

The proxy generator component located in the SOA
repository is responsible for the creation of REST
proxies and accompanying interface description doc-
uments. The repository also contains the web service
description documents for all existing services. Based
on these descriptions, a skeleton for a correspond-
ing REST proxy is generated. This skeleton is then
completed by a user who maps the web service oper-
ations onto REST resources and defines the appropri-
ate HTTP methods. The data models defined in the
WSDL file are then transformed into a JSON schema
description. With the manually added mappings and
the automatically created service skeleton and JSON
schemas, a REST proxy component can be generated
and deployed on the REST-to-SOAP-Proxy.

5 IMPLEMENTATION

The presented architecture provides a blueprint for the
realization of a REST-to-SOAP Middleware. The spe-
cific selection of technologies is highly dependent on
the IT ecosystem of a company. This section provides
an overview over possible technologies that can be
utilized for realization. It also presents a prototypi-
cal implementation of select components.

5.1 Implementation Technologies

For the realization of the proxy, including cache,
transformation and security, off-the-shelf software
products can be used. Application servers usually

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

708



Figure 2: Prototypical user interface for proxy generation in the SOA Governance Repository.

already support caching and provide security func-
tionalities which can be extended and used for our
R2SMA. Relevant application server vendors are for
example WSO25, Mulesoft6 and IBM7. Transforma-
tion can be realized using Java libraries or XSLT
style sheets. The transformation of messages between
JSON and XML can be handled by existing libraries
like XSLTJSON8. Approaches such as (Nogatz and
Frühwirth, 2014) could also be used to convert XML
to JSON schema.

As a repository we see our previously devel-
oped SOA Governance Repository (Königsberger and
Mitschang, 2016) as an ideal fit. The repository serves
as a one stop shop for all information about the state
of an enterprise SOA and provides documentation
about services and stakeholders. Of course, the func-
tionality could be developed as a stand-alone tool.
Possibly other off-the-shelf products could be used as
a basis, for example the products discussed in Sec-
tion 3, which already provide basic functionality for
creating REST proxies.

5.2 Prototypical Implementation

We implemented prototypes for select R2SMA com-
ponents and present them in the following section.

Proxy Generator. The SOA Governance Reposi-
tory stores the service and interface descriptions of
web services as RDF triples (Resource Description
Framework9). This is accomplished by parsing the
WSDL files of the services. The implementation of
the Proxy Generator uses this information to create
the skeletons for the REST proxies.

5https://www.wso2.com
6https://www.mulesoft.com
7https://www.ibm.com
8https://github.com/bramstein/xsltjson/
9https://www.w3.org/TR/rdf11-concepts/

Because of the already discussed paradigm dif-
ferences between REST APIs (resource-centric) and
conventional web services (operation-based), a man-
ual step is necessary to create a proxy. In this step, a
technical stakeholder has to map the operations onto
resource URIs and define the corresponding HTTP
methods. The base URI for the REST API is also
defined in this step. Figure 2 shows the user interface
of the SOA Governance Repository for the creation of
REST proxies.

The system supports the user by providing sug-
gestions for HTTP methods, based on the names of
the operations. For example, the method GET is sug-
gested if the operation name contains the keywords
get or retrieve. This information is then also stored
as triples in the SOA Governance Repository database
and later used for the generation of a REST proxy. A
proxy consists of a generated JAVA library that can be
deployed on the application server. It exposes a REST
API to the service consumers and utilizes an accom-
panying transformation to translate the incoming re-
quests into SOAP and vice versa. Currently caching
isn’t implemented in the prototype but will be part of
further development.

REST API Documentation. The information used
for the generation of REST proxies is also used to cre-
ate their interface description documents. The inter-
faces are described using the OpenAPI specification
(Open API Initiative, 2017). The information neces-
sary to create the description document is stored in
the SOA Governance Repository. It is extracted from
the parsed WSDL files as well as manually entered
during the operation-to-resource mapping.

The SOA Governance Repository also manages so
called Business Objects plus (BO+), we previously
presented in (Königsberger and Mitschang, 2017).
These BO+ describe the data models for service in-
terfaces independently from any specific description

R2SMA - A Middleware Architecture to Access Legacy Enterprise Web Services using Lightweight REST APIs

709



language. They too are stored as RDF triples and can
be transformed into a XML schema definition as well
as a REST-compatible JSON schema (Internet Engi-
neering Task Force, 2017). The transformation from
RDF triples to a JSON schema can be realized using
tools such as owl2jsonschema10.

6 USE CASE EXAMPLE

This section gives a short use case example on how
a REST API proxy is generated from a web service
and how the mapping from operations to resources is
realized.

The following code listing describes a simple web
service using WSDL 2.0. The service MyHRPortal
contains four operations to manage employees. With
these operations existing employees (one or many)
can be retrieved, deleted or new ones can be created.
The WSDL has been shortened and non-relevant parts
have been omitted.

<?xml version="1.0" encoding="UTF-8"?>
<description [...] >
<types>
<xs:schema [...] >
<xs:element name="employeeID"> ...
[...]

</xs:schema>
</types>

<interface name="HRPortal"> [...] <interface>

<binding name="SoapBinding"
interface="tns:HRPortal"
type="...w3.org/ns/wsdl/soap"
[...] >

<operation ref="tns:retrieveEmployees" />
<operation ref="tns:retrieveEmployee" />
<operation ref="tns:createEmployee" />
<operation ref="tns:removeEmployee" />

</binding>

<service name="MyHRPortal"
interface="tns:HRPortal">

<endpoint name="SoapBinding"
binding="tns:SoapBinding"
address=".../hr/soap/"/>

</service>
</description>

This WSDL document is parsed by and stored in
the R2SMA’s repository component. From this in-
formation a REST proxy skeleton is created already
containing most of the abstract contents of the parsed
WSDL, such as service name, description and data
types. Then, a service developer (or other technical

10https://github.com/redaktor/owl2jsonschema.js

stakeholder) would define the mapping from opera-
tions onto resources. Table 1 shows how the mapping
might be defined by the developer for this specific use
case. {id} is used as a placeholder. In a request it
would hold a specific ID of an employee and the value
is mapped to the property employeeID defined in the
WSDL file.

Table 1: Web service operation to REST resource mapping.

Web Service REST HTTP
Operation Resource Method
retrieveEmployees /employee GET
retrieveEmployee /employee/{id} GET
createEmployee /employee POST
removeEmployee /employee/{id} DELETE

A REST API proxy following this mapping and
providing these resource endpoints can then be made
available through the R2SMA for use by service con-
sumers.

7 ASSESSMENT

The use case example presented in the previous sec-
tion is straightforward and the mapping might even
have been done automatically. Unfortunately, not all
services can be mapped this easily. Especially if a ser-
vice’s operations have been defined in an unstructured
way, a correct mapping following REST guidelines
may not always be possible. In such cases lower ma-
turity levels for an API may need to be accepted. The
services could be changed to allow for an easier map-
ping onto REST structures, but that would go against
the basic concept of our architecture to provide REST
API access without modifying existing services.

The presented architecture itself, with its abstrac-
tion of back-end services through the Rest-to-SOAP
proxy middleware (R2) and the manual definition
of resources based on the operations defined in the
WSDL, fulfills level 2 of the Richardson Maturity
Model (Fowler, 2010) (R3). To achieve the highest
level 3, the support of full HATEOAS would be nec-
essary. This paper lays the groundwork for that, but
for full-fledged HATEOAS, it would be necessary to
further link the operations to define related actions on
certain resources. Here, further research is necessary
to be able to achieve this automatically.

All components of the architecture can also be de-
ployed utilizing load balancers or fail-over system to
achieve enterprise-grade reliability (R3).

The architecture adds an additional abstraction
layer, which also has an effect on overall performance

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

710



and response times. Due to the additional transforma-
tion, slightly negative effects on performance might
be possible, although the transformations themselves
are not computation-intensive. The newly introduced
cache of the R2SMA might even lead to an improve-
ment in performance and response times, as certain
repeating requests that have been answered by the
back-end services in the past now can be retrieved di-
rectly from the cache.

8 SUMMARY AND OUTLOOK

In summary, the REST-to-SOAP Middleware Archi-
tecture presented in this paper allows the continued
usage of an existing web service infrastructure for
new and more lightweight use cases without the need
to implement massive changes for these existing ser-
vices (R1). The architecture also allows to open up
new areas of business and for example make exist-
ing services available to external developers on a per-
use basis. The cache that is part of the architecture
allows to keep the load on the back-end systems as
minimal as possible while at the same time still pro-
viding the necessary level of security and support-
ing RESTful features such as the partial retrieval of
lists (R4). This means that there is only minimal, if
any, investment into more powerful hardware neces-
sary to handle the additional load. The integration of
a SOA repository allows for the management of both
REST APIs as well as conventional web services in
one place (R5) and provides the information basis for
a semi-automatic generation of REST APIs.

Future work will include the prototypical develop-
ment of the caching component as well as an experi-
mental evaluation of the architecture within an enter-
prise context to determine its feasibility in practice.

ACKNOWLEDGEMENTS

This work is partially funded by the BMWi project
IC4F (01MA17008G). The authors would also like to
thank H. Berner for valuable discussions and insights
from an enterprise perspective.

REFERENCES

Agrawal, N. (2015). HowTo – REST
API proxy to SOAP webservice.
https://blogs.mulesoft.com/dev/howto/rest-api-
proxy-to-soap-webservice.

Apigee (2014). New Apigee Wizard Converts
APIs from SOAP to REST in Minutes.
https://apigee.com/about/press-release/new-apigee-
wizard-converts-apis-soap-rest-minutes.

Bossert, O., Ip, C., and Laartz, J. (2014). A
two-speed IT architecture for the digital en-
terprise. http://www.mckinsey.com/business-
functions/business-technology/our-insights/a-two-
speed-it-architecture-for-the-digital-enterprise.

de Giorgio, T., Ripa, G., and Zuccalà, M. (2010). An Ap-
proach to Enable Replacement of SOAP Services and
REST Services in Lightweight Processes. In Current
Trends in Web Engineering. Springer.

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. Disserta-
tion, University of California, Irvine.

Fielding, R. T. (2008). REST APIs must be hypertext-
driven. http://roy.gbiv.com/untangled/2008/rest-apis-
must-be-hypertext-driven.

Fowler, M. (2010). Richardson Maturity
Model: Steps Toward the Glory of REST.
https://martinfowler.com/articles/richardsonMaturity
Model.html.

Internet Engineering Task Force (2017). JSON Schema.
https://tools.ietf.org/html/draft-handrews-json-
schema-00.

Königsberger, J. and Mitschang, B. (2016). A Semantically-
enabled SOA Governance Repository. In Proceedings
of the 2016 IEEE 17th International Conference on
Information Reuse and Integration. IEEE Computer
Society.

Königsberger, J. and Mitschang, B. (2017). Business Ob-
jects plus (BO+): An Approach to Enhance Service
Reuse and Integration in Cross-Domain SOA Com-
pounds. In Proceedings of the 2017 IEEE 18th Inter-
national Conference on Information Reuse and Inte-
gration. IEEE Computer Society.

Nogatz, F. and Frühwirth, T. W. (2014). From XML Schema
to JSON Schema: Translation with CHR. In Proceed-
ings of the Eleventh Workshop on Contraint Handling
Rules, volume abs/1406.2125.

Open API Initiative (2017). The OpenAPI Speci-
fication. https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.0.md.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008).
Restful Web Services vs. ’Big’ Web Services: Mak-
ing the Right Architectural Decision. In Proceedings
of the 17th International Conference on World Wide
Web. ACM.

Peng, Y. Y., Ma, S. P., and Lee, J. (2009). REST2SOAP:
A framework to integrate SOAP services and REST-
ful services. In 2009 IEEE International Confer-
ence on Service-Oriented Computing and Applica-
tions (SOCA).

R2SMA - A Middleware Architecture to Access Legacy Enterprise Web Services using Lightweight REST APIs

711


