Cisek, P. (2007). Cortical mechanisms of action selection:
the affordance competition hypothesis. Philosophical
Transactions of the Royal Society B: Biological Scien-
ces, 362(1485):1585–1599.
Cisek, P. and Kalaska, J. (2010). Neural mechanisms for
interacting with a world full of action choices. Annual
review of neuroscience, 33:269–298.
Da Lio, M., Thill, S., Svensson, H., Gurney, K., Anderson,
S., Windridge, D., Yksel, M., Saroldi, A., Andreone,
L., and Heich, H.-J. (2017). Exploiting Dream-Like
Simulation Mechanisms to Develop Safer Agents for
Automated Driving. Yokohama, Japan.
Dearden, A. and Demiris, Y. (2005). Learning forward mo-
dels for robots. International Joint Conference on Ar-
tificial Intelligence, 19:2–7.
Dixit, V. V., Chand, S., and Nair, D. J. (2016). Autono-
mous Vehicles: Disengagements, Accidents and Re-
action Times. PLOS ONE, 11(12):e0168054.
Dosovitskiy, A., Springenberg, J. T., Tatarchenko, M., and
Brox, T. (2017). Learning to generate chairs, ta-
bles and cars with convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 39(4):692–705.
Doya, K. (1999). What are the computations of the cerebel-
lum, the basal ganglia and the cerebral cortex? Neural
Networks, 12(78):961–974.
Gallagher, S. (2007). Social cognition and social robots.
Pragmatics & Cognition, 15(3):435–453.
Gibson, J. J. (1979). The Ecological Approach to Percep-
tion. Houghton Miflin, Boston (MA).
Grush, R. (2004). The emulation theory of representation:
motor control, imagery, and perception. The Beha-
vioral and brain sciences, 27(3):377–96; discussion
396–442.
Hesslow, G. (2012). The current status of the simulation
theory of cognition. Brain research, 1428:71–9.
Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural Com-
putation, 18:1527–1554.
Hinton, G. E. and Salakhutdinov, R. R. (2006). Redu-
cing the dimensionality of data with neural networks.
Science, 28:504–507.
Jeannerod, M. and Frak, V. (1999). Mental imaging of mo-
tor activity in humans. Current Opinion in Neurobio-
logy, 9(6):735–739.
Kalra, N. and Paddock, S. M. (2016). Driving to safety:
How many miles of driving would it take to demon-
strate autonomous vehicle reliability? Transportation
Research Part A: Policy and Practice, 94:182–193.
Lewis, J., Chambers, J. M., Redgrave, P., and Gurney,
K. N. (2011). A computational model of intercon-
nected basal ganglia-thalamocortical loops for goal di-
rected action sequences. In BMC Neuroscience, vo-
lume 12(Suppl 1), page 136, Stockholm.
Liu, D. and Todorov, E. (2007). Evidence for the flexible
sensorimotor strategies predicted by optimal feedback
control. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 27(35):9354–
68.
Meyer, K. and Damasio, A. (2009). Convergence and di-
vergence in a neural architecture for recognition and
memory. Trends in Neurosciences, 32(7):376–382.
Moulton, S. T. and Kosslyn, S. M. (2009). Imagining pre-
dictions: mental imagery as mental emulation. Phi-
losophical Transactions of the Royal Society B: Bio-
logical Sciences, 364(1521):1273–1280.
Redgrave, P., Prescott, T., and Gurney, K. (1999). The ba-
sal ganglia: a vertebrate solution to the selection pro-
blem? Neuroscience, 89:1009–1023.
Shevchenko, M., Windridge, D., and Kittler, J. (2009). A
linear-complexity reparameterisation strategy for the
hierarchical bootstrapping of capabilities within per-
ceptionaction architectures. Image and Vision Com-
puting, 27(11):1702–1714.
Thill, S. and Svensson, H. (2011). The inception of simu-
lation: a hypothesis for the role of dreams in young
children. In Carlson, L., Hoelscher, C., and Shipley,
T. F., editors, Proceedings of the 33rd Annual Con-
ference of the Cognitive Science Society, pages 231–
236, Austin, TX. Cognitive Science Society.
Ungerleider, L. and Mishkin, M. (1982). Two cortical visual
systems. In Ingle, D. J., Goodale, M. A., and Mans-
field, R. J. W., editors, Analysis of visual behavior,
pages 549–586. MIT Press, Cambridge (MA).
Windridge, D. (2017). Emergent Intentionality in
Perception-Action Subsumption Hierarchies. Fron-
tiers in Robotics and AI, 4.
Windridge, D., Felsberg, M., and Shaukat, A. (2012). A
Framework for Hierarchical Perception-Action Lear-
ning Utilizing Fuzzy Reasoning. IEEE transactions
on systems man and cybernetics Part B Cybernetics a
publication of the IEEE Systems Man and Cybernetics
Society, 43(1):155–169.
Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. (2011).
Principles of sensorimotor learning. Nature reviews.
Neuroscience, 12(12):739–51.
Wolpert, D. M. and Kawato, M. (1998). Multiple paired
forward and inverse models for motor control. Neural
Networks, 11(7-8):1317–1329.
Wolpert, D. M., Miall, R. C., and Kawato, M. (1998). In-
ternal models in the cerebellum. Trends in cognitive
sciences, 2(9):338–47.
Autonomous Vehicle Architecture Inspired by the Neurocognition of Human Driving
513