Chen, D. and Mak, B. K. (2015). Multitask Learning of
Deep Neural Networks for Low-Resource Speech
Recognition. IEEE/ACM Transactions on Audio,
Speech, and Language Processing.
Chien, J. and Ku, Y. (2016). Bayesian Recurrent Neural
Network for Language Modeling. IEEE Transactions
on Neural Networks and Learning Systems.
Ciresan, D. C., Meier, U. and Schmidhuber, J. (2012).
Multi-column deep neural networks for image
classification. Computer Vision and Pattern
Recognition.
Coppin, B., 2010. Inteligência Artificial, LTC. Rio de
Janeiro, 1
nd
edition.
Dahl, G. E., Yu, D., Deng, L. and Acero, A. (2012).
Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. IEEE
Transactions on Audio, Speech, and Language
Processing.
Deoras, A., Mikolov, T., Kombrink, S. and Church, K.
(2013). Approximate inference: A sampling based
modeling technique to capture complex dependencies
in a language model. Speech Communication.
Engel, P. M. (2002) “Redes Neuais – Notas de aula”, In:
Universidade Federal do Rio Grande do Sul, Porto
Alegre, Brasil.
Espanã-Boquera, S., Castro-Bleda, M. J., Gorbe-Moya, J.
and Zamora-Martinez, F. (2011). Improving Offline
Handwritten Text Recognition with Hybrid
HMM/ANN Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
Haykin, S. 2001. Redes Neurais: Princípios e prática,
Bookman. Porto Alegre, 2
nd
edition.
Hearst, M. A. (2011). ‘Natural’ search user interfaces.
Communications of the ACM.
Huang, X. and Deng, L. (2009). An Overview of Modern
Speech Recognition. Microsoft Corporation.
IBGE. (2014) “Pesquisa Nacional por Amostra de
Domicílios”, https://goo.gl/7uVigP, Junho 2017.
Jurafsky, D. and Martin, J. H. (2008), Speech and Language
Processing, Prentice Hall, 2th edition.
Kitchenham, B. and Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering. EBSE Technical Report.
Liu, X., Gales, M. J. F. and Woodland, P.C. (2013).
Language model cross adaptation for LVCSR system
combination. Computer Speech & Language.
Maas, A. L., Qi, P., Xie, Z., Hannun, A. Y., Lengerich, C.
T., Jurafsky, D. and Ng, A. Y. (2017). Building DNN
acoustic models for large vocabulary speech
recognition. Computer Speech & Language.
Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. and
Khu-danpur, S. (2010). Recurrent neural network based
language model. Proceedings of Interspeech.
Niesler, T. R., Whittaker, E. W. D. and Woodland, P.C.
(1998). Comparison of part-of-speech and
automatically derived category-based language models
for speech recognition. International Conference on
Acoustics, Speech and Signal Processing.
Pereira, F., Tishby, N. and Lee, L. (1993). Distributional
clustering of english words. Annual Meeting of the
Association for Computational Linguistics.
Shi, Y., Zhang, W., Liu, J. and Johnson, M. T. (2013). RNN
language model with word clustering and class-based
output layer. Journal on Audio, Speech, and Music
Processing.
Silva, C. P. A. (2010). “Um software de reconhecimento de
voz para português brasileiro”. In: Universidade
Federal do Pará, Pará, Brasil.
Silva, E., Pantoja, M., Celidônio, J. and Klautau, A. (2004)
“Modelos de Linguagem N-grama para
Reconhecimento de Voz com Grande Vocabulário”, In:
Laboratório de Banco de Dados, Belo Horizonte,
Brasil.
Siniscalchi, S. M., Svendsen, T. and Lee, C. (2013). A
Bottom-Up Modular Search Approach to Large
Vocabulary Continuous Speech Recognition. IEEE
Transactions on Audio, Speech, and Language
Processing.
Sundermeyer, M., Ney, H. and Schlüter, R. (2015). From
Feedforward to Recurrent LSTM Neural Networks for
Language Modeling. IEEE/ACM Transactions on
Audio, Speech, and Language Processing.
Tsai, C. D., Wu, T. T., Liu, Y. H. (2001). Application of
Neural Networks to Laser Ultrasonic NDE of Bonded
Structures. NDT&E Internacional.
Williams, G. and Renals, S. (1997). Confidence measures
for hybrid HMM/ANN speech recognition. Proc.
Eurospeech.