Goebel, C. and Voß, M. (2012). Forecasting driving be-
havior to enable efficient grid integration of plug-in
electric vehicles. Online Conference on Green Com-
munications (GreenCom), pages 74–79.
Hrabia, C.-E., Küster, T., Voß, M., Pardo, F. D. P., and Al-
bayrak, S. (2015). Adaptive multi-stage optimisation
for EV charging integration into smart grid control. In
International Conference on Principles and Practice
of Multi-Agent Systems, pages 622–630. Springer.
Hyndman, R. J. (2006). Another look at forecast-accuracy
metrics for intermittent demand. Foresight: The Inter-
national Journal of Applied Forecasting, 4(4):43–46.
Kirk, N. H. and Dianov, I. (2015). Towards predict-
ing first daily departure times: a gaussian modeling
approach for load shift forecasting. arXiv preprint
arXiv:1507.04502.
Lützenberger, M., Masuch, N., Küster, T., Freund, D., Voß,
M., Hrabia, C.-E., Pozo, D., Fähndrich, J., Trollmann,
F., Keiser, J., et al. (2015). A common approach to in-
telligent energy and mobility services in a smart city
environment. Journal of Ambient Intelligence and Hu-
manized Computing, 6(3):337–350.
Martinez, C. M., Hu, X., Cao, D., Velenis, E., Gao, B., and
Wellers, M. (2017). Energy management in plug-in
hybrid electric vehicles: Recent progress and a con-
nected vehicles perspective. IEEE Transactions on
Vehicular Technology, 66(6):4534–4549.
Martínez-Álvarez, F., Troncoso, A., Asencio-Cortés, G.,
and Riquelme, J. C. (2015). A survey on data min-
ing techniques applied to electricity-related time se-
ries forecasting. Energies, 8(11):13162–13193.
Mathieu, J. L., Vayá, M. G., and Andersson, G. (2013). Un-
certainty in the flexibility of aggregations of demand
response resources. In Industrial Electronics Society,
IECON 2013-39th Annual Conference of the IEEE,
pages 8052–8057. IEEE.
Neupane, B., Pedersen, T. B., and Thiesson, B. (2015).
Evaluating the value of flexibility in energy regulation
markets. In Proceedings of the 2015 ACM Sixth Inter-
national Conference on Future Energy Systems, pages
131–140. ACM.
Palensky, P. and Dietrich, D. (2011). Demand side manage-
ment: Demand response, intelligent energy systems,
and smart loads. IEEE transactions on industrial in-
formatics, 7(3):381–388.
Panahi, D., Deilami, S., Masoum, M. A., and Islam, S. M.
(2015). Forecasting plug-in electric vehicles load pro-
file using artificial neural networks. In Power En-
gineering Conference (AUPEC), 2015 Australasian
Universities, pages 1–6. IEEE.
Rivera, J., Goebel, C., and Jacobsen, H.-A. (2015). A dis-
tributed anytime algorithm for real-time EV charging
congestion control. In Proceedings of the 2015 ACM
Sixth International Conference on Future Energy Sys-
tems, pages 67–76. ACM.
Sortomme, E. and El-Sharkawi, M. A. (2012). Optimal
scheduling of vehicle-to-grid energy and ancillary ser-
vices. IEEE Transactions on Smart Grid, 3(1):351–
359.
Sundstrom, O. and Binding, C. (2012). Flexible charging
optimization for electric vehicles considering distri-
bution grid constraints. IEEE Transactions on Smart
Grid, 3(1):26–37.
Tushar, W., Yuen, C., Huang, S., Smith, D. B., and Poor,
H. V. (2016). Cost minimization of charging stations
with photovoltaics: An approach with ev classifica-
tion. IEEE Transactions on Intelligent Transportation
Systems, 17(1):156–169.
Vayá, M. G. and Andersson, G. (2015). Optimal bidding
strategy of a plug-in electric vehicle aggregator in day-
ahead electricity markets under uncertainty. IEEE
Transactions on Power Systems, 30(5):2375–2385.
Wijaya, T. K., Vasirani, M., Humeau, S., and Aberer, K.
(2015). Cluster-based aggregate forecasting for resi-
dential electricity demand using smart meter data. In
Big Data (Big Data), 2015 IEEE International Con-
ference on, pages 879–887. IEEE.
Yu, R., Zhong, W., Xie, S., Yuen, C., Gjessing, S., and
Zhang, Y. (2016). Balancing power demand through
ev mobility in vehicle-to-grid mobile energy net-
works. IEEE Transactions on Industrial Informatics,
12(1):79–90.
Application Independent Flexibility Assessment and Forecasting for Controlled EV Charging
119