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Abstract: In this paper, examples arising from a problem in education process control are considered. The provision of 
the number of information items in a specified discipline for education to optimize a suitable performance 
index is treated as a “dual control” process.   According to the theory of dual control, the control signal has 
two purposes which might be in conflict with each other: 1) to help learn about any unknown parameters 
and/or state of the system (estimation); 2) to contro1. In view of this, one can see that the open-loop 
feedback control is, from the estimation point of view, passive, since it does not take into account that 
learning is possible in the future. In contrast to this, a dual control is active, not only for the control purpose 
but also for the estimation purpose because the performance depends also on the “quality” of the estimates. 
Therefore, the dua1 control can be called actively adaptive since it regulates the speed and amount of 
learning as required by the performance index. To determine the sequence of optimal decisions, dynamic 
programming is used. It will be noted that the optimal policy can be compared with the non-optimal policy 
of optimizing stage by stage. To illustrate a new technique for education process optimization via the dual 
control approach, numerical examples are given.  

1 INTRODUCTION 

In all control problems there are certain degrees of 
uncertainty with respect to the process to be 
controlled. The structure of the process and/or the 
parameters of the process may vary in an unknown 
way. To obtain good process information it is 
necessary to perturb the process. Normally, the 
information about the process will increase with the 
level of perturbation. On the other hand the 
specifications of the closed loop system are such that 
the output normally should vary as little as possible. 
There is thus a conflict between information 
gathering and control quality. This problem was 
introduced and discussed by A. A. Feldbaum in a 
sequence of four seminal papers from 1960 and 
1961, see (Feldbaum, 1960-61). Feldbaum’s main 
idea is that in controlling the unknown process it is 
necessary that the controller has dual goals. First the 
controller must control the process as well as 
possible. Second, the controller must inject a 
probing signal or perturbation to get more 
information about the process. By gaining more 
process information better control can be achieved in 

future time. The compromise between probing and 
control or in Feldbaum’s terminology investigating 
and directing leads to the concept of dual control. 
Feldbaum showed that a functional equation gives 
the solution to the dual control problem. The 
derivation is based on dynamic programming and 
the resulting functional equation is often called the 
Bellman equation. Alper and Smith  (1967) use 
Feldbaum’s idea to provide places in a sector of 
education to satisfy an unknown social demand.  

This paper is an endeavour to clarify some 
concepts of underlying decision processes relating to 
education process control by utilizing the theory of 
automatic control. The purpose of this paper then is 
to indicate how some of the concepts of control 
theory may be utilized in order to bring about better 
performance of the education process. One of the 
most important features of control theory is its great 
generality, enabling one to analyze diverse systems 
within one unified framework. 

In order to illustrate the Feldbaum’s main idea, a 
simple example relevant to education process 
control is given below. The example has two 
outstanding virtues: the performance index is not the 
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usual quadratic one, and analytic solutions without 
approximations are possible, thus affording the 
opportunity of comparison with reasonable but not 
optimal policies. 

2 PROBLEM STATEMENT 

Let us assume that one has to decide on the number 
of information items to be made available in a 
specified discipline (course of lectures). Let the 
number of information items (discipline information 
quantity) made available be designated by u. 
However, the number of information items, x, 
successfully acquired by students, may be less than 
u, because the above number is limited to an 
unknown level H (as a function of the number of 
education hours and a fundamental knowledge level 
of students). 

Thus, one may write 

     X = min (u, H).  (1) 

The outcome of the decision is assessed by 
considering that the cost of providing an information 
item is the same whether it is understood or not and 
that the benefit derived from a student is to be given 
by a factor q times as great. Therefore, the total 
"education effect" may be written as 

    V =q X  u = q min (u, H)  u. (2) 

Clearly q > 1, otherwise one should not provide any 
information items at all. If H were known, V is 
maximized by choosing u=H.  

It is further assumed that 

  h1  H  h2  (3) 

and the decision maker's a priori knowledge is 
expressed by means of a probability density f(h). 
The question is then: what value should be chosen 
for u so as to maximize the expected education 
effect averaged over the a priori distribution of H? 

There are two possibilities: 

H < u, with probability 
1

( )
u

h

f h dh  

and 

      H  u, with probability 
2

( ) .
h

u

f h dh
  

(4) 

In the first case, X = H, with an expected H given by  

1 1

1

{ } ( ) ( ) .
u u

h h

E H hf h dh f h dh


 

   
 

 
     

(5) 

In the second case, X = u. The expected education 
effect is thus 

{ } { | }Pr( ) { | }Pr( )E V E V h u h u E V h u h u        

 
2

1

( ) ( ) ( 1) ( ) .
hu

h u

qh u f h dh q u f h dh      (6) 

Therefore, the optimum value of u, designated u is 
given by 

   
2

1/ ( )
h

u

q f h dh


   (7) 

and the corresponding extremized effect is 

1

{ } ( ) .
u

h

E V q hf h dh



     (8) 

3 MAXIMIZATION OF THE 
EXPECTED EDUCATION 
EFFECT OVER N STAGES 

The education effect of any particular stage (say, jth) 
of the education process may be written as 

  Vj =q min (uj, H)  uj. (9) 

Thus, the problem is to maximize the expected 
education effect over N stages, 

1 1

[ min( , ) ]
N N

N j j j
j j

G E V E q u H u
 

   
     

   
   

2

1
1̀

( ) ( )
j

j

u hN

j j
j h u

q hf h dh u f h dh u


  
    
    

    

2

1

( 1) ( )
h

h

N q hf h dh    

2

1
1

( ) ( ) ( 1) ( ) ( ) .
j

j

u hN

j j
j h u

u h f h dh q h u f h dh


 
     
 
 

    

 

(10) 
Now, consider a sequence of decisions maximizing 
(10). Let 1( )NG h  be the optimum total future 

education effect when there are N stages to go, and 
note that it is expressed as a function of the lower 
limit on H. The expected cost at the first of N stages 
is given by (6).  

If H < u, the expected effect of the succeeding 
(N1) stages will be given by 

CSEDU 2018 - 10th International Conference on Computer Supported Education

450



 

     
1 1

1

( 1)( 1) ( ) ( ) .
u u

h h

N q hf h dh f h dh


 

    
 

   (11) 

If H  u, then H is not known precisely, but the 
lower limit will have been raised from h1 to u. The 
optimum expected education effect of the 
succeeding N stages can thus be denoted by ( )NG u . 
Consequently, by analogy with the single-stage 
optimization 

1

1( ) max [ ( 1)( 1)] ( )
N

N

u

N
u

h

G h q N q hf h dh


   


  

2

1

1( ) [ ( 1) ( )] ( ) .
N

N

u h

N N N N

h u

u f h dh u q G u f h dh



    


   

 

(12) 
The results of the optimal policy can be compared 
with the outcome of repeated applications of the 
single-stage policy. The expected education effect 
over N+1 stages, QN+1, may then be interpreted in 
this instance as the ''non-dual" solution of the 
problem and may be derived as  

1

1 1

1
( ) [ ( 1)( 1)] ( ) ( ),

u

N N

h

Q h q N q hf h dh Q u
q




      

 

(13) 
where u is given by (7). 

3.1 Procedure for the Optimal Policy 

The procedure for the optimal policy is then, for the 
appropriate f(h), as follows: 

1) Determine Nu  using (12) and the current 

values of h1 and h2. 
2) Either H < Nu  in which case u= H for the 

remaining N1stages or H  Nu  in which case the 
above step is repeated again with N reduced by one 
and h1 replaced by Nu . 

3.2 Modification of the Optimization 
Equations 

If H were known to have its expected value, then it 
is convenient to express (12) as follows: 

2

1

1 1( ) ( ) ( 1) ( ) .
h

N N

h

G h R h N q hf h dh      (14) 

Then (12) may be rewritten as 

1

1 1( ) max ( ) ( ) ( )
N

N

u

N N N N
u

h

R h R u u h f h dh 



  


  

2

( 1) ( ) ( ) .
N

h

N

u

q h u f h dh


   


  (15) 

As for 1( )NG h above, we can write 
2

1

1 1( ) ( ) ( 1) ( ) ,
h

N N

h

Q h S h N q hf h dh      (16) 

so that (13) can be rewritten as 

  
2 2

1

1 1( ) ( ) ( ) ( ) .
h h

N N

hu

S h S u q hf h dh hf h dh



     (17) 

3.3 Illustrative Example 1 

(Rectangular probability density function of a priori 
knowledge). If only an upper and lower bound on H 
is known, then a priori knowledge about H is 
expressed as 

     1 2
2 1

1
( ; , ) ,f h h h

h h



h1  h  h2.   (18) 

It follows from the above that in this case we 
have:  

1 2 1( 1)( ),N Nu h a q h h                  (19) 

where 

  

1
0

1

1
,    0;

( 1)
N

N
N

a
a a

q a q





 

   
(20) 

    1 1 2 2 1

1
( ) [ ( ) ( )];

2N N

q
G h N h h a h h 

     (21) 

     1 1 2 2 1

( 1)
( ) [ ( )],

2N N

N q
Q h h h b h h


      (22) 

where 

      
2

2 1 2

1 1
.

1

N

N N

q
b

Nq q

 
   

  (23) 

The optimum policy when the number of stages to 
go is very large is, surprisingly enough, given by 

1 2 1

3
lim ( 1) 1 ( )

1NN

q
u u h q h h

q
 
 

 
        

 (24) 

With regard to a two-stage problem when for 
example, h1=10, q=1.2, h2=40, then 2G = 5.976 and 

Q2 = 5.764, an improvement of 3.6 percent for the 
optimum policy as compared to merely treating the 
problem as a non-dual, repeated single-stage 
problem.  
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3.4 Illustrative Example 2 

(Exponential probability density function of a priori 
knowledge). It is assumed that a priori knowledge is 
such that H is given as 

1
1 1

1
( | , ) exp ,    .

h h
f h h h h

 
      

 
 (25) 

In this situation, 

    1 ,N Nu h     (26) 

where 

    1ln( ),N Nq       0 = 0; (27) 

    1 1( ) ( 1)( ) ;N NG h N q h        (28) 

1 1 1

1
( ) ( 1)( ) ln .

( 1)

N

N N

q
Q h N q h q

q q
 


   


 (29) 

Then 

      1 ,u h 
     (30) 

where 
        ln( ).v q v    (31) 

The comparison for the dual solution versus the non-
dual solution for N=2, h1=0, q = e,  = l shows that 

2G = 2.123 and Q2 = 2.068, an improvement of 2.56 
percent. 

3.5 Illustrative Example 3 

(Polynomial probability density function of a priori 
knowledge). It is assumed that a priori knowledge is 
such that H is given as 

1
1 1 1( | , ) ( 1) ,    2,   .m mf h h m m h h m h h        

 

(32) 
In this case, 

 1 ,N Nu h    (33) 

where 

  1/ ( 1)

1( 1) ,
m

N Nq m  
      0=0;  (34) 

 1 1

1
( ) ( 1)( 1) ;

2N N

m
G h h q N q

m
        

 (35) 

1/( 1)
1 1

1
( ) ( 1)( 1)

2
m

N N

m
Q h h q N q q r

m
           

 

(36) 
where 

   1/ ( 1)
1

1
1 ,m

N Nr q q r
q


         r1=1. (37) 

The optimum policy for the infinite-stage case is to 
set 

   1 ,u h w
   (38) 

where w is greater than one and a root of  

 1 ( 1)( 1).mw q m w      (39) 

For a two-stage process and q=1.2, h1=10, m=3, we 
have that 2G =4.42 and Q2=4.36, an improvement of 

1.35 percent for the dual solution over the non-dual. 

4 PREDICTIVE INFERENCES 
FOR EDUCATION PROCESS 
CONTROL 

Various solutions have been proposed for the 
prediction problems, that is, the problems of making 
inferences on a random sample {Yi; i=1, …, m} 
given independent observations {Xj; j=1, …, n} 
drawn from the same distribution. The Yi’s and the 
Xj’s are commonly featured as “future outcomes” 
and “past outcomes” respectively. Inferences usually 
bear on some reduction Z of the Yi’s  possibly a 
minimal sufficient statistic  and consist of either 
frequentist prediction intervals or likelihood or 
predictive distribution of Z, depending on different 
authors. The following result is not new, but the 
example illustrates the procedure. 

4.1 Illustrative Example 1 

(Predictive exponential distribution). Suppose X1, 
…, Xn, Y are independent random variables each 
having density function 

( | ) (1 / ) exp( / ),    0,    0.f s s s        (40) 

The joint density is given by 

1
1 1

1
( ,  ..., , | ) exp

n

i
i

n n

x
y

f x x y 
 




 
 
   
 
 
 


 (41)   

and the factorization theorem gives 

 
1

n

i
i

T X Y


   (42) 

sufficient for . The conditional density of Y given T 
= t is 

    

1

1 ,   for   0 ,
( | )

0,                      otherwise.

n
n y

y t
g y t t t

         



 (43) 
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This is obtained by finding the joint distribution of  

iX and Y and transforming to it x y   and y. 

Then the two-sided predictive interval for Y will be 
(a, b) where a and b satisfy 

      ( | )
b

a

g y t dy   (44) 

or 

    1 1 .
n n

a b

t t
         

   
 (45) 

For example, if we take an interval of the form (0, 
b), which will be the interval of shortest width, we 
have 

       1/(0,  ) {0,   [1 (1 ) ]}.nb t     (46) 

Using the fact that it x y  , 

1/ [1 (1 ) ]ny t     (47) 

implies 

  1/

1

[(1 ) 1] .
n

n
i

i

y x 



     (48) 

Thus, 

1/

1

(0,  ) 0,  [(1 ) 1] .
n

n
i

i

b X 



    
 

  (49) 

This is, of course, the same result given by the 
standard approach of using the fact that the pivotal 
statistic / inY X is distributed F(2, 2n). 

5 SAMPLING DISTRIBUTIONS 
FOR EDUCATION PROCESS 
CONTROL 

The sampling truncated distributions have found 
many applications, including education process 
control. It is known that a sampling distribution for 
truncated law may be derived using, namely, the 
method based on characteristic functions (Bain and 
Weeks, 1964), the method based on generating 
functions (Charalambides, 1974), or the 
combinatorial method (Cacoullos, 1961). In this 
section, a much simpler technique than the above 
ones is proposed. It allows one to obtain the results 
for truncated laws more easily (Nechval et al., 2002, 
2008). 

Suppose an experiment yields data sample Xn = 
(X1, … , Xn) relevant to the value of a parameter  
(in general, vector). Let LX(xn|) denote the 

probability or probability density of Xn when the 
parameter assumes the value . Considered as a 
function of  for given Xn=xn, LX(xn|) is the 
likelihood function. If the data sample Xn can be 
summarized by a sufficient statistic S, one can write 
LS(s|)  LX(xn|). Further, for any non-negative 
function (s), (s)LS(s|) is also a likelihood 
function equivalent to LX(xn|). Suppose we 
recognize a function (s) such that (s)LS(s|), 
regarded as a function of s for a given , is a density 
function. It can be shown that this is the sampling 
density of S if the family of recognized densities is 
complete.  

The technique for finding sampling distributions 
of truncated laws is based on the use of the 
unbiasedness equivalence principle (UEP) and 
consists in the following. If  

 LX(xn|,)=[w(,,)]nLX(xn|), (50) 

represents the likelihood function for the truncated 
law, where w(,) is some function of a parameter 
(,) associated with truncation,  is a known 
truncation point (in general, vector), then a sampling 
density for the truncated law is determined by 

  
( ) ( ) ( ) ( ),

n
g w w g s | s s |

      sS ,   (51) 

where 

  
( ) ( ) ( )

n
w w gs s |
    

        = (s)LS(s|,)  LX(xn|,),   (52) 

g(s|) is a sampling density of a sufficient statistic 
s(Xn) (for a family of densities {f(x|)}) determined  
on the basis of LX(Xn|), ( )w S


is an unbiased 

estimator of 1/[w(,)]n with respect to g(s|), sS  
(a sample space of a non-truncated sufficient statistic 
S), (S) is a function of S for a given , which is 
equivalent to unbiased estimator )(Sw


 of 

1/[w(,)]n, i.e.,  

     (S)  ( )w S


 (53) 

or 

(S) =   
( ) ( , ) ( ) / ( , )

n
w w g L SS S | S |
    ,  (54) 

g (s|) is the sampling density of a sufficient 
statistic S (for a family of densities {f (x|)})  when 
the truncation parameter  is known, S  is a sample 
space of a truncated sufficient statistic S.  

To illustrate the above technique, we present the 
following illustrative examples. 
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5.1 Illustrative Example 1 

(Sampling distribution for the left-truncated Poisson 
law). Let the Poisson probability function be 
denoted by 

  
( | ) ,      0, 1, 2, ...  .

!

x

f x e x
x

  
 

(55) 

The probability function of the restricted random 
variable, which is truncated away from some 0, is 
then 

( | ) ( , ) ( | ),      1, 2, ...  ,f x w f x x           

(56) 
where 

1 1

1 0

( , ) 1 .
 !  !

j j

j j

w e e
j j


 



  
 


 

  

   
     
   
 

 

(57) 

Consider a sample of n independent observations X1, 
X2, …, Xn, each with probability function f (x|), 
where the likelihood function is defined as 

1

( | , ) ( | )
n

n
X i

i

L x f x  


  

     

1

( , ) ( | ) ( , ) ( | )
n

n nn
X i

i

w L x w f x     


    

     

 
1

 

1

( , ) ,
!

n

i
i

x

n n
n

i
i

w e
x

  










  

(58) 

and let 

1

,      ( 1),  ( 1) 1, ...  .
n

i
i

S X s n n 


    
   

(59) 

It is well known that 

  1

,      0, 1, ... 
n

i
i

S X s


  . (60) 

is a complete sufficient statistic for the family 
{f(x|)}. A result of Tukey (1949) states that 
sufficiency is preserved under truncation away from 
any Borel set in the range of X.  

For the sake of simplicity but without loss of 
generality, consider the case =0. It follows from 
(51) that 

  
( | ) ( ) ( , ) ( | )

n
g s w s w g s     

 

   

 !
,      , 1, ...  ,

( 1)  !

s
n
sn

n
C s n n

e s


  

  
(61) 

where 

  

( )
( | ) ,      0, 1, ... ,

 !

s
nn

g s e s
s

  
 

(62) 

  

1
[w( , )] ,  

(1 )
n

ne   
  

(63) 

 !
( ) ,n

ss

n
w s C

n


 
(64) 

n
sC  denotes the Stirling number of the second kind 

(Jordan, 1950) defined by 

0

1
( 1) ,       , 1, ... , 

 !

0,                                  ,               

n
n j s

n
js

n
j s n n

C jn

s n
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C e
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( )

0 0
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( 1) (1 ) ,

 !

sn
n j n j j n

j s

n j
e e e

j s
  

    

 

 
    

 
 

 
 

(66) 

This is the same result that of Tate and Goen (1958). 
Their proof was based on characteristic functions. 

5.2 Illustrative Example 2 

(Sampling distribution for the right-truncated 
exponential law). Let the probability density 
function of the right-truncated exponential 
distribution be denoted by 

 

 ( | ) ( , ) ( | ),      0 ,f x w f x x         (67) 

where 

       
/

1
( , ) ,

1
w

e    
  

(68) 

        
/( | ) (1/ ) ,      [0, ).xf x e x      (69) 

Consider a sample of n independent observations X1, 
X2, …, Xn, each with density f (x|), where the 
likelihood function is determined as 

CSEDU 2018 - 10th International Conference on Computer Supported Education

454



 

  

1

( | , ) ( | ) ( , ) ( | )
n

nn n
X i X

i

L x f x w L x     


   

    1

/
  

1

1
( , ) ( | ) ( , ) .

n

i
i

n x
n n

i n
i

w f x w e


    









   

(70) 
It is well known that 

 1

,     [0, ),
n

i
i

S X  s


  
 

(71) 

is a complete sufficient statistic for the family 
{f(x|)}. It follows from (51) that 

  
( | ) ( ) ( , ) ( | )

n
g s w s w g s       
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( 1) [( ( ) ) ] ,
( ) (1 )

s n
n j n

n n
j

ne
s n j

jn e



  



 




 
       

  

      [0, ],s n      n  1,   (72) 
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This is the same result that of Bain and Weeks 
(1964). Their proof was based on characteristic 
functions. 

5.3 Illustrative Example 3 

(Sampling distribution for the doubly truncated 
exponential law). Consider an exponential 
distribution (69) that is doubly truncated at a lower 
truncation point (1) and an upper truncation point 
(2). The probability density function of the doubly 
truncated exponential distribution is defined as 

1 2( | ) ( , ) ( | ),      ,f x w f x x          (77) 

where =(1,2), 

1 2/ /

1
( , ) .w

e e     


   (78) 

Consider a sample of n independent observations X1, 
X2, …, Xn, each with density f (x|), where the 
likelihood function is determined as 
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It is well known that 
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(80) 

is a complete sufficient statistic for the family 
{f(x|)}. It follows from (51) that 
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where a+=max(0,a), g(s|) is given by (73), 
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6 CONCLUSIONS 

This work has presented the new technique for 
education process optimization via the dual control 
approach. The main feature of this technique is the 
fact that it is actively adaptive, i.e., the control plans 
the future learning of the system parameters as 
needed by the overall performance. This contro1 is 
obtained by using the dynamic programming 
equation in which the dual effect of the control 
appears explicitly. The technique yields a closed-
loop control that takes into account not only the past 
observations but also the future observation program 
and the associated statistics. A detailed description 
of the technique is given and illustrative examples 
are presented.  

Although the examples discussed in this paper 
are highly simplified and have orders of magnitude 
simpler than the complex situation faced by the 
education decision-maker, it does indicate the way 
to some very interesting points. The optimum 
procedure is to consider the situation as a dual 
control problem where information and action are 
interrelated. 

The authors hope that this work will stimulate 
further investigation using the approach on specific 
applications to see whether obtained results with it 
are feasible for realistic applications. 
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