World Wirelessly, IWCMC ’09, pages 1350–1354,
New York, NY, USA. ACM.
CAPES (2017). Portal de Peri
´
odicos da CAPES. Dispon
´
ıvel
em: http://www. periodicos. capes. gov. br. Acesso
em: 08/2017.
Cassales, G., Charao, A., Kirsch-Pinheiro, M., Souveyet,
C., and Steffenel, L. (2014). Bringing context to
apache hadoop. In 8th International Conference on
Mobile Ubiquitous Computing, Rome, Italy.
Crk, I., Bi, M., and Gniady, C. (2008). Interaction-aware
energy management for wireless network cards. In
Proceedings of the 2008 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’08, pages 371–
382, New York, NY, USA. ACM.
Das, A. K., Adhikary, T., Razzaque, M. A., Alrubaian, M.,
Hassan, M. M., Uddin, M. Z., and Song, B. (2017).
Big media healthcare data processing in cloud: a col-
laborative resource management perspective. Cluster
Computing, pages 1–16.
Dey, A. K. (2001). Understanding and using context. Per-
sonal and ubiquitous computing, 5(1):4–7.
Doolin, K., Mullins, R., Abad, R. M., Moreno, M. G.,
Mota, T., Farshchian, B. A., and G
´
omez, M. (2008).
Supporting ubiquitous ims-based teleconferencing
through discovery and composition of ims and web
components. Journal of Network and Systems Man-
agement, 16(1):92–112.
Eijkhout, V. (2014). Introduction to High Performance Sci-
entific Computing. Lulu. com.
Gomes, A. T. A., Ziviani, A., Lima, L. d. S., and Endler,
M. (2009). Performance evaluation of a discovery and
scheduling protocol for multihop ad hoc mobile grids.
Journal of the Brazilian Computer Society, 15(4):15–
29.
H
¨
ahnel, M., Mendez, J., Thost, V., and Turhan, A.-Y.
(2014). Bridging the application knowledge gap: Us-
ing ontology-based situation recognition to support
energy-aware resource scheduling. In Proceedings of
the 13th Workshop on Adaptive and Reflective Middle-
ware, ARM ’14, pages 3:1–3:6, New York, NY, USA.
ACM.
Hovestadt, M., Kao, O., Keller, A., and Streit, A. (2003).
Scheduling in hpc resource management systems:
Queuing vs. planning. In Job Scheduling Strategies
for Parallel Processing, pages 1–20. Springer.
Hsu, C.-H., Chen, T.-L., and Park, J.-H. (2008). On im-
proving resource utilization and system throughput of
master slave job scheduling in heterogeneous systems.
The Journal of Supercomputing, 45(1):129–150.
Kovachev, D., Cao, Y., and Klamma, R. (2014). Build-
ing mobile multimedia services: a hybrid cloud com-
puting approach. Multimedia tools and applications,
70(2):977–1005.
Kumar, K. A., Konishetty, V. K., Voruganti, K., and Rao,
G. V. P. (2012). Cash: Context aware scheduler for
hadoop. In Proceedings of the International Con-
ference on Advances in Computing, Communications
and Informatics, ICACCI ’12, pages 52–61, New
York, NY, USA. ACM.
Paul, D. and Aggarwal, S. K. (2014). Multi-objective evo-
lution based dynamic job scheduler in grid. In Com-
plex, Intelligent and Software Intensive Systems (CI-
SIS), 2014 Eighth International Conference on, pages
359–366. IEEE.
Tranfield, D., Denyer, D., and Smart, P. (2003). Towards a
methodology for developing evidence-informed man-
agement knowledge by means of systematic review.
British journal of management, 14(3):207–222.
Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer,
D., and Karl, W. (2008). Scientific cloud computing:
Early definition and experience. In 2008 10th IEEE
International Conference on High Performance Com-
puting and Communications, pages 825–830.
Yahyapour, R. (2002). Design and evaluation of job
scheduling strategies for grid computing. PhD thesis,
Universit
¨
at Dortmund.
Y
¨
ur
¨
ur,
¨
O., Liu, C. H., Sheng, Z., Leung, V. C., Moreno,
W., and Leung, K. K. (2016). Context-awareness for
mobile sensing: A survey and future directions. IEEE
Communications Surveys & Tutorials, 18(1):68–93.
ICEIS 2018 - 20th International Conference on Enterprise Information Systems
670