particular domain data. We carried out a preliminary
evaluation using the data and categories from Open
ACM Linked Data resources. It is important to link
the resources of different datasets considering that
each one use different URIs for the resources i.e.
publications or authors. In the future we will make
relevance tests for the rankings and we will also study
the possibilities to scale this solution to manage big
quantities of information. Finally, we will work in:
analyzing a term based recommender module,
integrating other scientific databases and developing
a method to control de quality of the data. We need
also to define criteria for the final system evaluation
of the recommender system.
ACKNOWLEDGEMENTS
This publication comes from research conducted in
the project PII-16-06, with the financial support of
Escuela Politécnica Nacional from Quito, Ecuador.
REFERENCES
Amami, M., Pasi, G., Stella, F. and Faiz, R. 2016. An LDA-
Based Approach to Scientific Paper Recommendation.
In: Natural Language Processing and Information
Systems: 21st International Conference on Applications
of Natural Language to Information Systems, Springer
International Publishing, Switzeland, Cham. pp..200-
210.
Ayers, P. and Priedhorsky, R. 2011. WikiLit: collecting the
wiki and wikipedia literature. In:Proceedings of the 7th
international symposium on wikis and open
collaboration - WikiSym '11, 3/5 october 2011, Montain
View, USA. NewYork:ACM, pp.229-230.
Beel, J., Langer, S. and Genzmehr, M. 2013. Sponsored vs.
organic (research paper) recommendations and the
impact of labeling. In: Aalberg T., Papatheodorou C.,
Dobreva M., Tsakonas G., Farrugia C.J. (eds) Research
and Advanced Technology for Digital Libraries. TPDL
2013. Lecture Notes in Computer Science, vol 8092.
Springer, Berlin, Heidelberg pp.391-395.
Berners-Lee, T. 2006. Linked Data - Design Issues. [online]
W3C Available at: http://www.w3.org/DesignIssues/
LinkedData.html [Accessed 29 Nov. 2017].
Cheniki, N., Belkhir, A., Sam, Y. and Messai, N. 2016.
LODS: A linked open data based similarity measure. In
2016 IEEE 25th International Conference on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (WETICE), IEEE, Paris, pp. 229-234.
Di Noia, T., Mirizzi, R., Ostuni, V., Romito, D. and Zanker,
M. 2012.. Linked open data to support content-based
recommender systems.In: Proceedings of the 8th
International Conference on Semantic Systems - I-
SEMANTICS '12., ACM, New York, USA, pp. 1-8.
Figueroa, C., Vagliano, I., Rocha, O. R., and Morisio, M.
2015. A systematic literature review of Linked Data
based recommender systems. Concurrency and
Computation: Practice and Experience. 27(17), pp.
4659-4684.
Glaser, H. and Millard, I. 2007. RKB explorer: application
and infrastructure. SWC'07 In: Jennifer Golbeck and
Peter Mika (eds.), Proceedings of the 2007
International Conference on Semantic Web Challenge,
CEUR-WS.org, Aachen, Germany, pp.97-104.
Goldberg, D. Nichols, D., Oki B.M. and Terry, D. 1992.
Using collaborative filtering to weave an information
tapestry. Commun. ACM. 35 (12), pp. 61–70.
Hajra, A., Latif, A. and Tochtermann, K. 2014. Retrieving
and ranking scientific publications from linked open
data repositories. In: Proceedings of the 14th
International Conference on Knowledge Technologies
and Data-driven Business - i-KNOW '14. ACM,
NewYork, USA.
Hallo, M., Luján-Mora, S., Maté, A and Trujillo, J. 2016.
Current state of Linked Data in digital libraries. Journal
of Information Science. 42(2), pp.117-127.
Hu, Y., Janowicz, K., Hitzler, P. and Sengupta, K. (2015).
The semantic web journal as linked data. In:
Proceedings of 2015 International Semantic Web
Conference (demos and posters track).
Bethlehem.USA.
Jack, K., Ingold, E. and Hristakeva, M. 2016. Mendeley
Suggest Architecture. A Practical Guide to Building
Recommender Systems. Available at: https://building
recommenders.wordpress.com/2016/10/10/mendeley-
suggest-architecture/ [Accessed 29 Nov. 2017].
Kaur, S. and Dhindsa, K. 2016. Comparative study of
citation and reference management tools: Mendeley,
Zotero and ReadCube.. In: International Conference on
ICT in Business Industry & Government (ICTBIG),
IEEE, pp.1-5.
Lops, P., De Gemmis, M. and Semeraro, G. 2011. Content-
based recommender systems: State of the art and trends.
In: Ricci., R. Okach, L. Shapira, B. Kantor, (eds).
Recommender systems handbook, F.., Springer, pp. 73-
105.
Lüke, T., Schaer, P. and Mayr, P. 2013. A framework for
specific term recommendation systems. In:
Proceedings of the 36th international ACM SIGIR
conference on Research and development in
information retrieval - SIGIR '13.ACM, New York,
USA, pp.1093-1094.
Lüke, T., Schaer, P. and Mayr, P. 2012. Improving retrieval
results with discipline-specific query expansion.In:
Zaphiris, P., Buchanan, G., Rasmussen, E. and
Loizides, F. (eds) Theory and Practice of Digital
Libraries, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp.408-413.
Beel, J., Genzmehr, M. and Langer, S. 2013. Sponsored vs.
organic (research paper) recommendations and the
impact of labeling. In: Aalberg T., Papatheodorou C.,
Dobreva M., Tsakonas G., Farrugia C.J. (eds) Research
and Advanced Technology for Digital Libraries. TPDL