creation and to obtain an image as similar as possible
to what would obtain a real system. In this sense, the
simulator tries to generalize its use to different
disciplines.
Currently the user is allowed to define day, month,
year, time, latitude, longitude, streets, structures and
vegetation for the random creation of a scenario that,
with probabilities or specific quantities of objects, can
be exported in the respective spectral and spatial
resolutions of interest.
Moreover, the present tool allows the user to
define the desired spectral band and spatial
resolution. This flexibility is fundamental to the make
SImS a universal tool. For this reason, as an example,
images corresponding to the OLI (Landsat 8) sensor
spectral resolutions were presented in this paper.
Our future work will consist of integrating other
elements of the territory, such as elevation models
and different atmospheric models with different
meteorological parameters. In this way it will be
possible to parameterize sensors and platforms for the
effective integration in the generation of synthetic
images, considered by the countries strategic factor.
ACKNOWLEDGEMENTS
The authors acknowledge the Regional Government
of Andalusia (Spain) for the financial support since
1997 for their research group (Ingeniería
Cartográfica) with code PAIDE-TEP-164 and the
Department of Science and Technology of the
Brazilian Army.
REFERENCES
Alarcon, V. J. and Sassenrath, G. F. 2004. Cotton crop
spectral imaging analysis: a web-based hyperspectral
synthetic imagery simulation system. In: Remote
Sensing and Modeling of Ecosystems for Sustainability,
(Gao, W. and Shaw, D.R., Eds.). Proceedings of SPIE,
Vol. 5544, 178-185.
Baldridge, A. M., S. J. Hook, C. I. Grove and G. Rivera,
2009.. The ASTER Spectral Library Version 2.0.
Remote Sensing of Environment, vol 113, pp. 711-715.
Boggione, G. A.; Pires, E.G; Santos, P. A; Fonseca, L. M.
G. Simulation of Panchromatic band by spectral
combination of multispectral ETM+ bands.
International Symposium on Remote Sensing of
Environment (ISRSE), Hawai, Nov. 2003.
Chen, F.; Niu, Z.; Sun, G.; Wang, C.; Tang, J. Using low-
spectral-resolution images to acquire simulated
hyperspectral images. International Journal of Remote
Sensing, v. 29, p. 2963-2980, 2008.
Esposito, E. S. C. Simulação das bandas espectrais das
câmaras CCD e WFI do satélite CBERS, a partir de
dados do sensor hiperespectral AVIRIS. versão: 1970-
01-01. Dissertação (Mestrado em Sensoriamento
Remoto) - Instituto Nacional de Pesquisas Espaciais,
São José dos Campos, 1998.
Francis, I; Maver, L.; Schott, J.R. Comparison of physically
and computer generated imagery. Proceedings SPIE, v.
1904, p. 20-23, 1993.
Ientilucci, E.J.;Brown, S.D. Advances in Wide Area
Hyperspectral Image Simulation. Proceedings of SPIE
Vol. 5075 (2003).
Justice, C. O.; Markhan, B. L.; Townshend, J. R. G.;
Kennard, R. L. Spatial degradation of satellite data.
International Journal of Remote Sensing, v. 10, n. 9, p.
1539-1561, 1989.
Latorre, M.; Abílio, O.; Júnior R, D. C.; Paula, A.;
Carvalho, F. D.; Shimabukuro, Y. E. Correção
Atmosférica: Conceitos e Fundamentos. Espaço &
Geografia, v.5, n. 1, p. 153-178, 2002.
Maeda, E. E.; Arcoverde, G. F. B.; Formaggio, A. R.;
Shimabukuro,Y. E. Evaluation of the potentiality of
WFI/CBERS-3 Sensor data for land use and land cover
classification. Revista Brasileira de Cartografia, v. 1,
n. 60, p. 79-87, 2008.
Marcal, A. R. S.; Rodrigues, A.; Cunha, M. "Evaluation of
satellite image segmentation using synthetic images,"
2010 IEEE International Geoscience and Remote
Sensing Symposium, Honolulu, HI, 2010, pp. 2210-2213.
Nelson, M. D.; McRoberts, R. E.; Holden, G. R; Bauer,
M.E. Effects of satellite image spatial aggregation and
resolution on estimates of forest land area.
International Journal of Remote Sensing, v. 30, n. 8, p.
1913-1940, 2009.
Maver, L.; Scarff, L. Multispectral image simulation.
Proceedings SPIE, v.1904, p. 144-160, 1993.
Sassenrath, G. F., Alarcon-Calderon, V. J., Pringle, H. C.
2003. “Synthetic imagery of cotton crops: Scaling from
leaf to full canopy.” Digital Imaging and Spectral
Techniques: Applications to Precision Agriculture and
Crop Physiology. T. van Taoi, ed.. pp. 111-133.
Agronomy Society of America Special Publication
Number 66, Madison, WI.
Schott, J. R. Remote sensing the image chain approach.
New York, NY: Oxford University, 1997 394305169.
Schott, J.R.; Raqueno, R.V.; Raqueno, N.G.; Brown, S. D.
A Synthetic Sensor/Image Simulation Tool to Support
the Landsat Data Continuity Mission (LDCM). In
Proceedings of ASPRS 2010 Annual Conference, San
Diego, CA, USA, 26–30 April 2010.
Schott, J.; Gerace, A.; Brown, S.; Gartley, M.; Montanaro,
M.; Reuter, D.C. Simulation of Image Performance
Characteristics of the Landsat Data Continuity Mission
(LDCM) Thermal Infrared Sensor (TIRS). Remote
Sens.2012, 4, 2477-2491.
Yang, G.; Liu, Q.; Liu, Q.; Huang, W.; Wang, J. Simulation
of high-resolution mid-infrared (3–5 mm) images using
an atmosphere radiative transfer analytic model.
International Journal of Remote Sensing, vl. 30, n. 22,
p. 6003–6022, 2009.