C. Olston, J. Jiang, J. Widom: Adaptive filters for
continuous queries over distributed data streams,
SIGMOD, 2003
C.-Yi Chiu, T.-H. Tsai, G.-W. Han, C.-Y. Hsieh, S.-Y. Li:
Efficient Video Stream Monitoring for Near-Duplicate
Detection and Localization in a Large-Scale
Repository. ACM Trans. Inf. Syst. 31(4):22, 2013
C.C. Aggarwal, P.S. Yu: A Framework for Clustering
Uncertain Data Streams, IEEE ICDE, 2008
D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster,
I. Sharfman, A. Deligiannakis: Geometric Monitoring
of Heterogeneous Streams. IEEE Trans. Knowl. Data
Eng. 26(8): 1890-1903, 2014
D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster,
I. Sharfman, A. Deligiannakis: Monitoring Distributed,
Heterogeneous Data Streams: The Emergence of Safe
Zones. ICAA, 2014, pp. 17-28
D. Keren, I. Sharfman, A. Schuster, A. Livne: Shape
Sensitive Geometric Monitoring. IEEE Trans. Knowl.
Data Eng. 24(8): 1520-1535, 2012
D.J. Mir, S. Muthukrishnan, A. Nikolov, R.N. Wright: Pan-
private algorithms via statistics on sketches, PODS,
2011, pp. 37-48
E. Shi, T.-H. H. Chan, E.G. Rieffel, R. Chow, D. Song:
Privacy-preserving aggregation of time-series data,
NDSS, 2011
G. Cormode, M. Garofalakis: Sketching Probabilistic Data
Streams, ACM SIGMOD, 2007
G. Cormode, M.N. Garofalakis: Approximate continuous
querying over distributed streams. ACM Transactions
on Database Systems, 33(2), 2008
G. Li, C. Luo, J. Li: Continuous Monitoring of Top-k
Dominating Queries over Uncertain Data Streams.
WISE, 2014, pp. 244-255
G. Pernul, et al. Towards OLAP Security Design - Survey
and Research Issues, ACM DOLAP, pp. 114-121, 2000
Gray J., et al. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-
Totals. Data Mining and Knowledge Discovery, 1(1):
29-54, 1997
H. Gyu Kim, C. Kim: Interval clustering algorithm for fast
event detection in stream monitoring applications.
Pattern Recognition Letters 36:171-176, 2014
I. Sharfman, A. Schuster, D. Keren: A geometric approach
to monitoring threshold functions over distributed data
streams, SIGMOD, 2006
I. Taylor, J.L. Sharp, D.L. White, J.O. Hallstrom, G.W.
Eidson, J.B. von Oehsen, E.B. Duffy, C.V. Privette III,
C.T. Cook, A. Sampath, G. Radhakrishnan: Monitoring
Sensor Measurement Anomalies of Streaming
Environmental Data Using a Local Correlation Score.
COM.Geo, 2013, pp.136-137
J. Han, Y. Chen, G. Dong, J. Pei, B.W. Wah, J. Wang, Y.D.
Cai: Stream Cube: An Architecture for Multi-
Dimensional Analysis of Data Streams, Distributed and
Parallel Databases 18(2), 2005
J. Smailovic, M. Grcar, N. Lavrac, M. Znidarsic: Stream-
based active learning for sentiment analysis in the
financial domain. Inf. Sci. 285:181-203, 2014
J. Zhou, O.C. Au, G. Zhai, Y.Y. Tang, X. Liu: Scalable
Compression of Stream Cipher Encrypted Images
Through Context-Adaptive Sampling. IEEE
Transactions on Information Forensics and Security
9(11):1857-1868, 2014
K. Al-Hussaeni, B.C.M. Fung, W.K. Cheung: Privacy-
preserving trajectory stream publishing. Data Knowl.
Eng. 94:89-109, 2014
K. Alotaibi, V.J. Rayward-Smith, B. de la Iglesia:
Nonmetric multidimensional scaling: A perturbation
model for privacy-preserving data clustering. Statistical
Analysis and Data Mining 7(3):175-193, 2014
K.-Y. Cao, G.-R. Wang, D.-H. Han, G.-H. Ding, A.-X.
Wang, L.-X. Shi: Continuous Outlier Monitoring on
Uncertain Data Streams. J. Comput. Sci. Technol.
29(3):436-448, 2014
L. Fan, L. Xiong. Real-time aggregate monitoring with
differential privacy, CIKM, 2012
L. Golab, M.T. Özsu: Issues in data stream management.
SIGMOD Record 32(2): 5-14, 2003
L. Huang, M. Garofalakis, J. Hellerstein, A. Joseph, and N.
Taft. Toward sophisticated detection with distributed
triggers, SIGCOMM, 2006
L. Huang, X. L. Nguyen, M. Garofalakis, J. M. Hellerstein,
M. I. Jordan, A. D. Joseph, and N. Taft.
Communication-efficient online detection of network-
wide anomalies, INFOCOM, 2007
L. Sweeney, k-Anonymity: A Model for Protecting Privacy.
Int. Jou. on Uncertainty Fuzziness and Knowledge-
based Systems, 10(5): 557-570, 2002
L. Wang, et al. Cardinality-based Inference Control in Data
Cubes. Jou. of Computer Security, 12(5): 655-692,
2004
L. Wang, et al. Securing OLAP Data Cubes against Privacy
Breaches, IEEE SSP, pp. 161-175, 2004
L.J.C. Re, M. Balazinska, M. Philipose: Approximation
Trade-Offs in Markovian Stream Processing: An
Empirical Study, IEEE ICDE, 2010
M. Gaber, A. Zaslavsky, S. Krishnaswamy: Mining Data
Streams: A Review, SIGMOD Record 34(2), 2005
M. Gan, H. Dai: Detecting and monitoring abrupt
emergences and submergences of episodes over data
streams. Inf. Syst. 39:277-289, 2014
M. Hua, et al. FMC: An Approach for Privacy Preserving
OLAP, DaWaK, pp. 408-417, 2005
M.-J. Hsieh, M.-S. Chen, P.S. Yu: Approximate Query
Processing in Cube Streams, IEEE Trans. on
Knowledge and Data Engineering 19(11), 2007
N. Giatrakos, A. Deligiannakis, M.N. Garofalakis, I.
Sharfman, A. Schuster: Distributed Geometric Query
Monitoring Using Prediction Models. ACM Trans.
Database Syst. 39(2): 16, 2014
N. Li, W.H. Qardaji, D. Su, J. Cao: PrivBasis: Frequent
Itemset Mining with Differential Privacy. PVLDB
5(11):1340-1351, 2012
Q. Zhang, F. Li, K. Yi: Finding Frequent Items in
Probabilistic Data, ACM SIGMOD, 2008
R. Agrawal, et al. Privacy-Preserving Data Mining, ACM
SIGMOD, pp. 439-450, 2000
PP-OMDS: An Effective and Efficient Framework for Supporting Privacy-Preserving OLAP-based Monitoring of Data Streams
291