infrastructure deployment for electric vehicles in
smart cities and communities”, APVV-15-0179
”Reliability of emergency systems on infrastructure
with uncertain functionality of critical elements”, by
the Alan Turing Institute, call for collaboration in the
Lloyd’s Register Foundation Programme to support
data-centric engineering under grant number LRF16-
05, and it was facilitated by the FP 7 project ERAdiate
[621386]”Enhancing Research and innovation
dimensions of the University of Žilina in Intelligent
Transport Systems”. We thank to Marcelo Masera
(EC, JRC in Petten) and to Nazir Refa (ELAADNL)
for enabling the access to the dataset.
REFERENCES
Bertsimas D., King A. and Mazumder, R. (2016), Best
subset selection via a modern optimization lens, The
Annals of Statistics 44 (2), 813–852.
Bessa, R. J. and Matos, M. A. (2013) ‘Global against
divided optimization for the participation of an EV
aggregator in the day-ahead electricity market. Part II:
Numerical analysis’, Electric Power Systems Research.
Elsevier B.V., 95, pp. 309–318. doi:
10.1016/j.epsr.2012.08.013.
Bickora C., Refa N., Verheijen L. and Weiland S. (2016),
Prediction of availability of charging rate at charging
stations for electric vehicles, IEEE International
Conference on Probabilistic Methods Applied to Power
Systems, DOI: 10.1109/PMAPS.2016.7764216.
Centraal Bureau voor de Statistiek (2016a) Transport and
Mobility 2016. The Hague. Available at:
http://acceleratingtransitions.eu/content/uploads/2014/
10/Factsheet_6_Transport_and_mobility.pdf.
Centraal Bureau voor de Statistiek (2016b).
Colak S., Kara E. C., Moura S. J. and Gonzalez M. C.
(2016): Coupling Electric Vehicle Charging with Urban
Mobility, review and resubmit in Nature Energy,
(http://humnetlab.mit.edu/wordpress/publications/).
Develder Ch., Sadegghianpourhamani N., Strobbe M. and
Refa N. (2016), Quantifying flexibility in EV charging
as DR potential: Analysis of two real-world data sets,
IEEE International Conference on Smat Grid
Communications, DOI: 10.1109/ SmartGridComm.
2016.7778827.
EEA (2016) Trends and projections in Europe 2016 -
Tracking progress towards Europe’s climate and energy
targets. Copenhagen. doi: 10.2800/93693.
ELAAD (2016). Data has been provided by
https://www.elaad.nl/.
Fetene G.M., Kaplan S., Mabit S.L., Jensen A.F. and Prato
C.G., (2017), Harnessin bif data for estimating the
energy consumption and driving range of electric
vehicles, Transportation Reserach Part D 54, pp. 1-11,
2017.
Hastie T., Tibshirani R. and Friedman J. (2009), The
elements of statistical learning: Data mining, Inference
and Prediction, Springer-Verlag New Yourk, ISBN
978-0-387-84857-0.
Hastie T., Thibshirani R. and Tibshirani R.J. (2017),
Extended comparison of best subset selection, forward
stepwise selection and the Lasso,
https://arxiv.org/pdf/1707. 08692.pdf.
IEA (2014) The Netherlands 2014.
IEA (2017) Key world energy statistics. OECD/IEA.
IEA - Statistics (2015). Available at:
https://www.iea.org/statistics/statisticssearch/report/?c
ountry=NETHLAND=&product=indicators
(Accessed: 5 November 2017).
James G., Witten D. and Hastie T. and Thishirani R. (2013),
An introduction to statistical learning: with
Applications in R, Springer Science + Business Media,
I SBN 978-1-4614-7137-0.
National Research Council (2013) Transitions to
Alternative Vehicles and Fuels. Washington, D.C.:
National Academies Press. doi: 10.17226/18264.
Netherland Enterprise Agency (2015) ‘We are the
Netherlands , your partner in E-mobility !’ Utrecht:
Netherlands Enterprise Agency.
Sadegghianpourhamani N., Refa N., Strobbe, M. and
Develder C. (2018), Quantitative analysis of electric
vehicle flexibility, A data-driven approach,
International Journal of Electrical Power and Energy
Systems, Vol. 95, pp. 451-462.
Taylor J. and Tibshirani R.J. (2015), Statistical and
selective inference, PNAS, Vol. 112 (25), pp- 7629-
7634.
Trends in the Netherlands 2016. The Hague. Available at:
file:///C:/Users/wenka/Downloads/trends-in-the-
netherlands-2016 (1).pdf.
Verma A., Asadi A., Yang K. and Tyagi S. (2015), A data-
driven approach to identify households with plug-in
electrical vehicles (PEVs), Applied Energy 160, pp. 71-
79.
Xydas E., Marmaras Ch., CipCigan, L.M., Jenkins N.,
Carroll S. and Barker M. (2016), A data-driven
approach for characterising the charging demand of
electric vehicles: A UK case study, Applied Energy
162, pp. 763-771.