ACKNOWLEDGEMENTS
This work has been supported by COMPETE:
POCI-01-0145-FEDER-007043 and FCT –
Fundação para a Ciência e Tecnologia within the
Project Scope: UID/CEC/00319/2013.
REFERENCES
Abdullah, Z., Herawan, T., Ahmad, N., Deris, M., 2011.
Mining significant association rules from educational
data using critical relative support approach. In
Procedia - Social and Behavioral Sciences, Volume
28, pp. 97-101, ISSN 1877-0428,
https://doi.org/10.1016/j.sbspro.2011.11.020.
ACM/IEEE, 2013. Computer Science Curricula 2013 --
Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science, Final Report.
Agrawal, R., Srikant, R., 1994. Fast Algorithms for
Mining Association Rules. In VLDB-94.
Almeida, D., 2012. A motivação do Aluno no Ensino
Superior: um estudo exploratório. Dissertação
apresentada ao programa de Mestrado em Educação da
Universidade Estadual de Londrina.
Bayardo R., Agrawal R., 1999. Mining the Most
Interesting Rules. In Proc. of the 5th International
Conference on Knowledge Discovery and Data
Mining, KDD-99, pp. 145-153.
Buldu, A., Üçgün, K., 2010. Data mining application on
students’ data. In Procedia - Social and Behavioral
Sciences, Volume. 2, Issue 2, pp. 5251-5259, ISSN
1877-0428,
https://doi.org/10.1016/j.sbspro.2010.03.855.
Callahan, M., 2010. How Do I Motivate My Students?
Teaching Resources, Texas Tech University.
García, E., Romero,C., Ventura,S., Castro, C., 2011. A
collaborative educational association rule mining tool.
In The Internet and Higher Education, Volume 14,
Issue 2, pp. 77-88, ISSN 1096-7516.
Han, J., Kamber, M., 2000. Data Mining: Concepts and
Technique. Morgan Kaufmann Publishers, 2000.
Han, J., Pei, J., Yin, Y., Mao, R., 2004. Mining Frequent
Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach. Data Min. Knowl. Discov. 8, 1
(January 2004).
Hundhausen, C., Douglas, S., 2000. Using Visualizations
to Learn Algorithms: Should Students Construct Their
Own, or View an Expert’s? Proceedings 2000 IEEE
International Symposium on Visual Languages IEEE
Computer Society Press, Los Alamitos.
Karkhanis, S. P., Dumbre, S.S., 2015. A Study of
Application of Data Mining and Analytics in
Education Domain. Int. Journal of Computer
Applications,Volume.120, No.22, pp. 23-28.
Kularbphettong, K., Tongsiri, C., 2012. Mining
Educational Data to Analyze the Student Motivation
Behavior. World Acad. Sci. Eng. Technol., Volume. 6,
no. 8, pp. 1036–1040.
Kumar, V., Chadha, A., 2012. Mining association rules in
student’s assessment data. International Journal of
Computer Science Issues, 9(5), pp. 211-216.
Mohamad, S. K., Tasir, Z., 2013. Educational Data
Mining: A Review. In Procedia - Social and
Behavioral Sciences, Volume.97, pp. 320-324,
ISSN1877-0428
Peña-Ayala, A., 2014. Educational data mining: A survey
and a data mining-based analysis of recent works.
Expert Systems with Applications, 41(4), pp. 1432–
1462.
Proulx, V., 2000. Programming patterns and design
patterns in the introductory computer science course.
Proceedings of the thirty-first SIGCSE technical
symposium on Computer science education, pp. 80-84.
New York.
Ramos, S., 2013. Motivação Académica dos Alunos do
Ensino Superior. Psicologia.pt, O portal dos
Psicólogos.
Ryan, R., Deci, E., 2000. Self-Determination Theory and
the Facilitation of Intrinsic Motivation, Social
Development, and Well-Being. American
Psychologist, Vol. 55, pp. 68-78.
Santos, R., Costa, H., 2006. Análise de Metodologias e
Ambientes de Ensino para Algoritmos, Estruturas de
Dados e Programação aos iniciantes em Computação e
Informática. INFOCOMP – Journal of Computer
Science, Lavras/MG – Brasil, volume 5, n. 1, pp. 41-
50.
Silva, T., Mascarenhas, I., Medeiros, C., Sousa, E., 2014.
A Motivação no Ensino Superior: Um Estudo com
Alunos dos Cursos de Administração e Direito.
Journal of Management Analysis, Volume 3, pp.104-
113.Fortaleza.
Tavares, P., Henriques, P., Gomes, E., 2017. A Computer
Platform to Increase Motivation in Programming
Students – PEP. 9th International Conference on
Computer Supported Education (CSEDU 2017).
Porto, Portugal.
Williams, K., Williams, C., 2011. Five Key Ingredients for
Improving Student Motivation. Research in Higher
Education Journal, pp. 104-122.
Studying Programming Students Motivation using Association Rules
519