Pattern Recognition Algorithm. Proceedings of 2016
Fourth International Conference on Ubiquitous
Positioning, Indoor Navigation and Location Based
Services (IEEE Upinlbs 2016), 223-229.
doi:10.1109/upinlbs.2016.7809976.
Luštrek, M., Cvetkovic, B., Mirchevska, V., Kafalı, Ö.,
Romero, A., and Stathis, K. (2015). Recognising
lifestyle activities of diabetic patients with a
smartphone. doi:10.4108/icst.pervasivehealth.
2015.259118.
Mengistu, Y., Pham, M., Do, H. M., and Sheng, W. (2016).
AutoHydrate: A Wearable Hydration Monitoring
System. 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (Iros 2016), 1857-1862.
doi:10.1109/iros.2016.7759295.
Neuroph. (2017). Java Neural Network Framework
Neuroph. Retrieved from http://neuroph.sourceforge.
net/
Ng, A. Y. (2004). Feature selection, L 1 vs. L 2
regularization, and rotational invariance. Paper
presented at the Proceedings of the twenty-first
international conference on Machine learning.
Ni, D., Leonard, J. D., Guin, A., and Feng, C. (2005).
Multiple Imputation Scheme for Overcoming the
Missing Values and Variability Issues in ITS Data.
Journal of Transportation Engineering, 131(12), 931-
938. doi:10.1061/(asce)0733-947x(2005)131:12(931).
Nishida, M., Kitaoka, N., and Takeda, K. (2015). Daily
activity recognition based on acoustic signals and
acceleration signals estimated with Gaussian process.
Paper presented at the 2015 Asia-Pacific Signal and
Information Processing Association Annual Summit
and Conference (APSIPA).
Pires, I., Garcia, N., Pombo, N., and Flórez-Revuelta, F.
(2016). From Data Acquisition to Data Fusion: A
Comprehensive Review and a Roadmap for the
Identification of Activities of Daily Living Using
Mobile Devices. Sensors, 16(2), 184.
Pires, I. M., Garcia, N. M., and Flórez-Revuelta, F. (2015).
Multi-sensor data fusion techniques for the
identification of activities of daily living using mobile
devices. Paper presented at the Proceedings of the
ECMLPKDD 2015 Doctoral Consortium, European
Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, Porto,
Portugal.
Pires, I. M., Garcia, N. M., Pombo, N., and Flórez-
Revuelta, F. (2016-a). Identification of Activities of
Daily Living Using Sensors Available in off-the-shelf
Mobile Devices: Research and Hypothesis. Paper
presented at the Ambient Intelligence-Software and
Applications–7th International Symposium on Ambient
Intelligence (ISAmI 2016).
Pires, I. M., Garcia, N. M., Pombo, N., and Flórez-
Revuelta, F. (2017 (In Review)-a). A Multiple Source
Framework for the Identification of Activities of Daily
Living Based on Mobile Device Data.
arXiv:1711.00104.
Pires, I. M., Garcia, N. M., Pombo, N., and Flórez-
Revuelta, F. (2017 (In Review)-b). User Environment
Detection with Acoustic Sensors Embedded on Mobile
Devices for the Recognition of Activities of Daily
Living. arXiv:1711.00124.
Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F.,
and Rodríguez, N. D. (2016-b). Validation Techniques
for Sensor Data in Mobile Health Applications. Journal
of Sensors, 2016.
Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F.,
and Spinsante, S. (2017 (In Review)-c). Data Fusion on
Motion and Magnetic Sensors embedded on Mobile
Devices for the Identification of Activities of Daily
Living. engrxiv.org/x4r5z.
Pires, I. M., Garcia, N. M., Pombo, N., Flórez-Revuelta, F.,
and Spinsante, S. (2017 (In Review)-d). Pattern
Recognition Techniques for the Identification of
Activities of Daily Living using Mobile Device
Accelerometer. arXiv:1711.00096.
Rader, C., and Brenner, N. (1976). A new principle for fast
Fourier transformation. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 24(3), 264-
266. doi:10.1109/tassp.1976.1162805.
Rahman, S. A., Huang, Y., Claassen, J., Heintzman, N., and
Kleinberg, S. (2015). Combining Fourier and lagged k-
nearest neighbor imputation for biomedical time series
data. J Biomed Inform, 58, 198-207.
doi:10.1016/j.jbi.2015.10.004.
Research, H. (2017). Encog Machine Learning Framework.
Retrieved from http://www.heatonresearch.com/encog/
Scalvini, S., Baratti, D., Assoni, G., Zanardini, M., Comini,
L., and Bernocchi, P. (2013). Information and
communication technology in chronic diseases: a
patient’s opportunity. Journal of Medicine and the
Person, 12(3), 91-95. doi:10.1007/s12682-013-0154-1.
Sert, M., Baykal, B., and Yazici, A. (2006, 0-0 0). A Robust
and Time-Efficient Fingerprinting Model for Musical
Audio. Paper presented at the 2006 IEEE International
Symposium on Consumer Electronics.
Shoaib, M., Scholten, H., and Havinga, P. J. M. (2013).
Towards Physical Activity Recognition Using
Smartphone Sensors. 2013 IEEE 10th International
Conference on and 10th International Conference on
Autonomic and Trusted Computing (Uic/Atc)
Ubiquitous Intelligence and Computing, 80-87.
doi:10.1109/Uic-Atc.2013.43.
Vateekul, P., and Sarinnapakorn, K. (2009). Tree-Based
Approach to Missing Data Imputation. Paper presented
at the Data Mining Workshops, 2009. ICDMW '09.
IEEE International Conference on Miami, FL.
Zou, X., Gonzales, M., and Saeedi, S. (2016). A Context-
aware Recommendation System using smartphone
sensors. Paper presented at the 2016 IEEE 7th Annual
Information Technology, Electronics and Mobile
Communication Conference (IEMCON).