REFERENCES
Aihara, K. and Katayama, R. (1995). Chaos engineering in
japan. Communications of the ACM, 38(11):103–107.
Bahrami, M., Jamilnia, R., and Naghash, A. (2009). Trajec-
tory optimization of space manipulators with flexible
links using a new approach. International Journal of
Robotics, 1(1):48–55.
Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour,
O., and Bouzouia, B. (2017). Optimal path planning
and execution for mobile robots using genetic algo-
rithm and adaptive fuzzy-logic control. Robotics and
Autonomous Systems, 89:95–109.
Belaidi, H., Bentarzi, H., and Belaidi, M. (2017). Imple-
mentation of a mobile robot platform navigating in dy-
namic environment. In MATEC Web of Conferences,
volume 95, page 08004. EDP Sciences.
Coulaud, J. and Campion, G. (2007). Optimal trajectory
tracking for differentially flat systems with singulari-
ties. In Control and Automation, 2007. ICCA 2007.
IEEE International Conference on, pages 1960–1965.
IEEE.
Fliess, M., L
´
evine, J., Martin, P., and Rouchon, P. (1995).
Flatness and defect of non-linear systems: introduc-
tory theory and examples. International journal of
control, 61(6):1327–1361.
Hargas, Y., Mokrane, A., Hentout, A., Hachour, O., and
Bouzouia, B. (2015). Mobile manipulator path plan-
ning based on artificial potential field: Application on
robuter/ulm. In Electrical Engineering (ICEE), 2015
4th International Conference on, pages 1–6. IEEE.
Jansri, A., Klomkarn, K., and Sooraksa, P. (2004). On com-
parison of attractors for chaotic mobile robots. In In-
dustrial Electronics Society, 2004. IECON 2004. 30th
Annual Conference of IEEE, volume 3, pages 2536–
2541. IEEE.
Klan
ˇ
car, G. and
ˇ
Skrjanc, I. (2007). Tracking-error model-
based predictive control for mobile robots in real time.
Robotics and Autonomous Systems, 55(6):460–469.
Korayem, M., Yousefzadeh, M., and Manteghi, S. (2016).
Dynamics and input–output feedback linearization
control of a wheeled mobile cable-driven parallel ro-
bot. Multibody System Dynamics, pages 1–19.
Kumar, N., Panwar, V., Borm, J.-H., and Chai, J.
(2014). Enhancing precision performance of trajec-
tory tracking controller for robot manipulators using
rbfnn and adaptive bound. Applied Mathematics and
Computation, 231:320–328.
Lai, C. Y. (2014). Improving the transient performance
in robotics force control using nonlinear damping.
In Advanced Intelligent Mechatronics (AIM), 2014
IEEE/ASME International Conference on, pages 892–
897. IEEE.
Levine, J. (2009). Analysis and control of nonlinear sys-
tems: A flatness-based approach. Springer Science &
Business Media.
Markus, E., Agee, J., Jimoh, A., Tlale, N., and Zafer, B.
(2012). Flatness based control of a 2 dof single link
flexible joint manipulator. In SIMULTECH, pages
437–442.
Markus, E. D., Agee, J. T., and Jimoh, A. A. (2013). Tra-
jectory control of a two-link robot manipulator in the
presence of gravity and friction. In AFRICON, 2013,
pages 1–5. IEEE.
Markus, E. D., Agee, J. T., and Jimoh, A. A. (2017). Flat
control of industrial robotic manipulators. Robotics
and Autonomous Systems, 87:226–236.
Martins-Filho, L. S., Machado, R. F., Rocha, R., and Vale,
V. (2004). Commanding mobile robots with chaos. In
ABCM Symposium Series in Mechatronics, volume 1,
pages 40–46.
Nakamura, Y. and Sekiguchi, A. (2001). The chaotic mo-
bile robot. IEEE Transactions on Robotics and Auto-
mation, 17(6):898–904.
Nehmzow, U. (2003). Quantitative analysis of robot–
environment interactiontowards scientific mobile ro-
botics. Robotics and Autonomous Systems, 44(1):55–
68.
Nicolau, F. and Respondek, W. (2013). Multi-input control-
affine systems linearizable via one-fold prolongation
and their flatness. In Decision and Control (CDC),
2013 IEEE 52nd Annual Conference on, pages 3249–
3254. IEEE.
Siegwart, R., Nourbakhsh, I. R., and Scaramuzza, D.
(2011). Introduction to autonomous mobile robots.
MIT press.
Tinh, N. V., Linh, N. T., Cat, P. T., Tuan, P. M., Anh, M. N.,
and Anh, N. P. (2016). Modeling and feedback line-
arization control of a nonholonomic wheeled mobile
robot with longitudinal, lateral slips. In Automation
Science and Engineering (CASE), 2016 IEEE Inter-
national Conference on, pages 996–1001. IEEE.
Trejo-Guerra, R., T.-C. E. C.-H. C. S.-L. C. F. M. (2008).
Current conveyor realization of synchronized chuas
circuits for binary communications. IEEE . DTIS, pa-
ges 1–4.
Vaidyanathan, S. (2013). Analysis and adaptive synchro-
nization of two novel chaotic systems with hyperbolic
sinusoidal and cosinusoidal nonlinearity and unknown
parameters. Journal of Engineering Science and
Technology Review, 6(4):53–65.
Veslin Diaz, E., Slama, J., Dutra, M., Lengerke, O., and Mo-
rales Tavera, M. (2011). Trajectory tracking for robot
manipulators using differential flatness. Ingenier
´
ıa e
Investigaci
´
on, 31(2):84–90.
Vivek, S., Sunil, K., Jaume, F., et al. (2010). Differential
flatness of a class of n-dof planar manipulators driven
by 1 or 2 actuators.
Control of the Chaotic Phenomenon in Robot Path using Differential Flatness
243