Bosson et al., 2012. Interactive physically-based structural
modeling of hydrocarbon systems, J. of
Computational Physics, vol. 231, 6, p 2581-2598.
Brenner D.W. et al., 1996. Simulated engineering of
nanostructures, Fourth Foresight Conference on
Molecular Nanotechnology.
Brenner D.W., 1990. Empirical potential for hydrocarbons
for use in simulating the chemical vapor deposition of
diamond films, Phys. Rev. B, 42, 9458-9471.
Brenner D.W. et al. 1991, Molecular dynamics
simulations of the nanometer-scale mechanical
properties of compressed
Buckminsterfullerene”, Thin Solid Films 206, 220–223.
Brenner D.W., 2000. The art and science of an analytic
potential, Phys. Stat. Sol. (b) 217, 23–40.
Brenner D.W. and al. 2002, A second-generation reactive
empirical bond order (REBO) potential energy
expression for hydrocarbons, J. Phys.: Condens.
Mater. 14, 783–802.
Chen H. et al., 2008. Mechanically strong, electrically
conductive, and biocompatible graphene paper, Adv.
Mater. 20 (18), pp 3557-3561.
Crespi V. H. et al., Prediction of a pure-carbon planar
covalent metal, Phys. Rev. B 53, R13303(R) (1996)
A. V. Crewe, J. Wall, and J. Langmore, Science 168, 1338
(1970).
Dai X. Q. et al., 2011. First-principle study of magnetism
induced by vacancies in graphene, Eur. Phys. J. B, 80,
343–349.
Dettori R. et al. 2012, Elastic fields and moduli in defected
graphene, J. Phys.: Condens. Matter, 24, 104020.
Dyson A.J. and Smith P.V., 1996. Extension of the
Brenner empirical interatomic potential to C–Si-H
systems. Surf. Sci. 355, 140–150.
El-Barbary A.A. et al., 2003. Structure and energetics of
the vacancy in graphite, Phys. Rev. B 68, 144107.
Faccio R. et al., 2012. Magnetism in multivacancy
graphene systems, J. Phys.: Condens. Matter, 24,
375304.
Gass M.H. et al., 2008. Free-Standing Graphene at Atomic
Resolution, Nat. Nanotechnol, 3, 676–681.
Geim A.K. and Novoselov K.S., 2007. The rise of
graphene, Nat. Mater 6, pp 183-191.
Girit Ç Ö. Et al., Graphene at the Edge: Stability and
Dynamics, Science 27 Mar 2009, Vol. 323, Issue
5922, pp. 1705-1708
Hashimoto A. and al., 2004. Direct evidence for atomic
defects in graphene layers, Nature, 430, 870–873,
DOI: 10.1038/nature02817
Jensen P. and al. 2002. Catalysis of nanotube plasticity
under tensile strain, Phys. Rev. B, 66, 193403.
Joh H.-I. et al., 2013. Synthesis and properties of an
atomically thin carbon nanosheet similar to graphene
and its promising use as an organic thin film transistor,
Carbon, 55, pp. 299-304.
Koch C., 2002. Determination of core structure periodicity
and point defect density along dislocations. PhD.
Thesis, Arizona State University.
Kotakoski J. et al., 2011. From point defects in graphene
to two-dimensional amorphous carbon, Phys. Rev.
Lett. 106, 105505.
Kotakoski J. et al. (2011). Stone-Wales-type
transformations in carbon nanostructures driven by
electron irradiation, Phys. Rev. B, 83, 245420.
Lee C. et al., 2008. Measurement of the elastic properties
and intrinsic strength of monolayer graphene, Science
321 (5887), pp 385-388.
Lee E. et al., 2010. Electrical properties and
photoconductivity of stacked-graphene carbon
nanotubes, Adv Mater, 22 (16), pp. 1854-1857.
Lee Y.H. et al., 1997. Catalytic Growth of Single-Wall
Carbon Nanotubes: An ab Initio Study, Phys. Rev.
Lett., 78 2393-2396.
Lehtinen O. et al., 2003. Magnetic Properties and
Diffusion of Adatoms on a Graphene Sheet. Phys. Rev.
Lett., 91, 017202.
Lehtinen O. et al., 2010. Effect of ion bombardment on a
two-dimensional target: atomistic simulations of
graphene irradiation, Phys. Rev. B 81(15), 153401.
Lehtinen O. et al., 2013. Atomic scale study of the life
cycle of a dislocation in graphene from birth to
annihilation, Nat. Commun., 4, 3098.
Li L. et al., 2005. Defect energies of graphite: density-
functional calculations, Phys. Rev. B 72, 184109.
Los J.H. and Fasolino A., 2002. Monte Carlo simulations
of carbon-based structures based on an extended
Brenner potential, Comput. Phys. Commun. 147,
178–181.
Los J.H. and Fasolino A., 2003. Intrinsic long-range bond-
order potential for carbon: performance in Monte
Carlo simulations of graphitization, Phys. Rev. B 68,
024107.
Ma J. et al., 2009. Stone-Wales defects in graphene and
other planar sp
2
-bonded materials, Phys. Rev. B 80,
033407.
Meyer J.C. et al., 2008. Direct imaging of lattice atoms
and topological defects in graphene membranes, Nano
Letters, Vol. 8, nº11, 3582-3586.
Novoselov K.S. et al., 2004. Electric field effect in
atomically thin carbon films. Science 306.5696: 666-
669.
Park S. et al., 2012. The effect of concentration of
graphene nanoplatelets on mechanical and electrical
properties of reduced graphene oxide papers, Carbon,
50 (12), pp. 4573-4578.
Pauling L., 1960. The Nature of the Chemical Bond,
Cornell Univ. Press, NY.
Pei Q.X. et al., 2010. A molecular dynamics study of the
mechanical properties of hydrogen functionalized
graphene, Carbon, 48 (3), pp 898-904.
Qureshi A. et al., 2009. Review on carbon-derived, solid-
state, micro and nano sensors for electrochemical
sensing applications. Diamond and Related Materials,
18.12, 1401-1420.
Ramasse Q.M. et al., 2013. Probing the Bonding and
Electronic Structure of Single Atom Dopants in
Graphene with Electron Energy Loss Spectroscopy,
Nano. Lett., 13, 4989-4995.