Graichen, K., Kugi, A., Petit, N., and Chaplais, F. (2010).
Handling constraints in optimal control with satura-
tion functions and system extension. Systems & Con-
trol Letters, 59(11):671–679.
Grosman, B. and Lewin, D. R. (2005). Automatic gener-
ation of Lyapunov functions using genetic program-
ming. IFAC Proceedings Volumes, 38(1):75–80.
Haupt, R. L. and Haupt, S. E. (1998). Practical genetic
algorithms, volume 2. New York: Wiley.
Holland, J. H. (1975). Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. University
of Michigan Press.
Hosen, M. A., Khosravi, A., Nahavandi, S., and Creighton,
D. (2015). Improving the quality of prediction inter-
vals through optimal aggregation. IEEE Transactions
on Industrial Electronics, 62(7):4420–4429.
Koza, J. R. (1992). Genetic programming: on the program-
ming of computers by means of natural selection, vol-
ume 1. MIT press.
Koza, J. R., Keane, M. A., Yu, J., Bennett, F. H., Myd-
lowec, W., and Stiffelman, O. (1999). Automatic syn-
thesis of both the topology and parameters for a robust
controller for a nonminimal phase plant and a three-
lag plant by means of genetic programming. In Deci-
sion and Control, 1999. Proceedings of the 38th IEEE
Conference on, volume 5, pages 5292–5300. IEEE.
Koza, J. R., Keane, M. A., Yu, J., Mydlowec, W., and Ben-
nett, F. H. (2000). Automatic synthesis of both the
topology and parameters for a controller for a three-
lag plant with a five-second delay using genetic pro-
gramming. In Workshops on Real-World Applica-
tions of Evolutionary Computation, pages 168–177.
Springer.
Lyapunov, A. M. (1992). The general problem of the sta-
bility of motion. International Journal of Control,
55(3):531–534.
McGough, J. S., Christianson, A. W., and Hoover, R. C.
(2010). Symbolic computation of Lyapunov functions
using evolutionary algorithms. In Proceedings of the
12th IASTED International Conference, volume 15,
pages 508–515.
Mirafzal, S. H., Khorasani, A. M., and Ghasemi, A. H.
(2016). Optimizing time delay feedback for active
vibration control of a cantilever beam using a ge-
netic algorithm. Journal of Vibration and Control,
22(19):4047–4061.
Najafi, E., Babu
ˇ
ska, R., and Lopes, G. A. (2016). A fast
sampling method for estimating the domain of attrac-
tion. Nonlinear Dynamics, 86(2):823–834.
Naur, P., Backus, J. W., Bauer, F. L., Green, J., Katz, C.,
McCarthy, J., and Perlis, A. J. (1969). Revised report
on the algorithmic language Algol 60. Springer.
Pacejka, H. (2005). Tyre and vehicle dynamics. Butter-
worth-Heinemann, Oxford, 2 edition.
Petersen, I., Johansen, T. A., Kalkkuhl, J., and L
¨
udemann,
J. (2001). Wheel slip control in ABS brakes using
gain scheduled constrained LQR. In European Con-
trol Conference (ECC), pages 606–611. IEEE.
Poli, R., Langdon, W. B., and McPhee, N. F. (2008). A
field guide to genetic programming. Published via
http://lulu.com and freely available online (last visit
24/05/2018) http://www.gp-field-guide.org.uk. (With
contributions by J. R. Koza).
Prajna, S., Papachristodoulou, A., and Parrilo, P. A. (2002).
Introducing SOSTOOLS: A general purpose sum of
squares programming solver. In Decision and Control,
2002, Proceedings of the 41st IEEE Conference on,
volume 1, pages 741–746. IEEE.
Precup, R.-E., Sabau, M.-C., and Petriu, E. M. (2015).
Nature-inspired optimal tuning of input membership
functions of Takagi-Sugeno-Kang fuzzy models for
anti-lock braking systems. Applied Soft Computing,
27:575–589.
Reichensd
¨
orfer, E., Odenthal, D., and Wollherr, D. (2017).
Grammatical evolution of robust controller structures
using Wilson scoring and criticality ranking. In Eu-
ropean Conference on Genetic Programming, pages
194–209. Springer.
Ryan, C., Collins, J., and Neill, M. O. (1998). Grammati-
cal evolution: evolving programs for an arbitrary lan-
guage. In European Conference on Genetic Program-
ming, pages 83–96. Springer.
Saadat, J., Moallem, P., and Koofigar, H. (2017). Training
echo state neural network using harmony search algo-
rithm. International Journal of Artificial Intelligence,
15(1):163–179.
Saleme, A., Tibken, B., Warthenpfuhl, S. A., and Selbach,
C. (2011). Estimation of the domain of attraction for
non-polynomial systems: A novel method. IFAC Pro-
ceedings Volumes, 44(1):10976–10981.
Shimooka, H. and Fujimoto, Y. (2000). Generating robust
control equations with genetic programming for con-
trol of a rolling inverted pendulum. In Proceedings of
the 2nd Annual Conference on Genetic and Evolution-
ary Computation, pages 491–495. Morgan Kaufmann
Publishers Inc.
Singh, R., Kuchhal, P., Choudhury, S., and Gehlot, A.
(2015). Implementation and evaluation of heating sys-
tem using PID with genetic algorithm. Indian Journal
of Science and Technology, 8(5):413.
Sontag, E. D. (1983). A Lyapunov-like characterization of
asymptotic controllability. SIAM Journal on Control
and Optimization, 21(3):462–471.
Tsuzuki, T., Kuwada, K., and Yamashita, Y. (2006). Search-
ing for control Lyapunov-Morse functions using ge-
netic programming for global asymptotic stabilization
of nonlinear systems. In Proceedings of the 45th IEEE
Conference on Decision and Control, pages 5114–
5119. IEEE.
Verdier, C. and Mazo Jr, M. (2017). Formal controller syn-
thesis via genetic programming. IFAC-PapersOnLine,
50(1):7205–7210.
Vrkalovic, S., Teban, T.-A., and Borlea, I.-D. (2017). Stable
Takagi-Sugeno fuzzy control designed by optimiza-
tion. Int. J. Artif. Intell, 15:17–29.
Zhou, K., Doyle, J. C., Glover, K., et al. (1996). Robust and
optimal control, volume 40. Prentice hall New Jersey.
Nonlinear Control Structure Design using Grammatical Evolution and Lyapunov Equation based Optimization
65