the end, the proposed test scenarios relied on the use
of the VAP RGB-D database (Hg et al., 2012) (due
to its public availability), and the full comparison to
others techniques were impaired due to their experi-
mentations in private data bases. Future works seek
to experiment the proposed methodology in private
databases to obtain broader results.
REFERENCES
Belhumeur, P. N., Hespanha, J. a. P., and Kriegman, D. J.
(1997). Eigenfaces vs. fisherfaces: Recognition using
class specific linear projection. IEEE Trans. Pattern
Anal. Mach. Intell., 19(7):711–720.
Borgi, M. A., Labate, D., El Arbi, M., and Amar, C. B.
(2015). Sparse multi-stage regularized feature learn-
ing for robust face recognition. Expert Systems with
Applications, 42(1):269–279.
Bormann, R., Zw
¨
olfer, T., Fischer, J., Hampp, J., and
H
¨
agele, M. (2013). Person recognition for service
robotics applications. In Humanoid Robots (Hu-
manoids), 2013 13th IEEE-RAS International Confer-
ence on, pages 260–267. IEEE.
Bowyer, K. W., Chang, K., and Flynn, P. (2006). A survey
of approaches and challenges in 3d and multi-modal
3d+ 2d face recognition. Computer vision and image
understanding, 101(1):1–15.
Burrows, A. M. and Cohn, J. F. (2009). Anatomy of face. In
Encyclopedia of Biometrics, pages 16–23. Springer.
Chen, Z., Huang, W., and Lv, Z. (2017). Towards a face
recognition method based on uncorrelated discrimi-
nant sparse preserving projection. Multimedia Tools
and Applications, 76(17):17669–17683.
Chowdhury, A., Ghosh, S., Singh, R., and Vatsa, M. (2016).
Rgb-d face recognition via learning-based reconstruc-
tion. In Biometrics Theory, Applications and Systems
(BTAS), 2016 IEEE 8th International Conference on,
pages 1–7. IEEE.
Goswami, G., Bharadwaj, S., Vatsa, M., and Singh, R.
(2013). On rgb-d face recognition using kinect.
In Biometrics: Theory, Applications and Systems
(BTAS), 2013 IEEE Sixth International Conference
on, pages 1–6. IEEE.
Goswami, G., Vatsa, M., and Singh, R. (2014). Rgb-d face
recognition with texture and attribute features. IEEE
Transactions on Information Forensics and Security,
9(10):1629–1640.
Haghighat, M., Abdel-Mottaleb, M., and Alhalabi, W.
(2016). Fully automatic face normalization and sin-
gle sample face recognition in unconstrained environ-
ments. Expert Systems with Applications, 47:23–34.
Haykin, S. and Network, N. (2004). A comprehensive foun-
dation. Neural Networks, 2(2004):41.
Hesher, C., Srivastava, A., and Erlebacher, G. (2003).
A novel technique for face recognition using range
imaging. In Signal processing and its applications,
2003. Proceedings. Seventh international symposium
on, volume 2, pages 201–204. IEEE.
Hg, R., Jasek, P., Rofidal, C., Nasrollahi, K., Moeslund,
T. B., and Tranchet, G. (2012). An rgb-d database us-
ing microsoft’s kinect for windows for face detection.
In Signal Image Technology and Internet Based Sys-
tems (SITIS), 2012 Eighth International Conference
on, pages 42–46. IEEE.
Hu, N., Bormann, R., Zw
¨
olfer, T., and Kr
¨
ose, B. (2014).
Multi-user identification and efficient user approach-
ing by fusing robot and ambient sensors. In Robotics
and Automation (ICRA), 2014 IEEE International
Conference on, pages 5299–5306. IEEE.
Jain, A., Hong, L., and Pankanti, S. (2000). Biometric iden-
tification. Communications of the ACM, 43(2):90–98.
Jain, A. K., Ross, A., and Prabhakar, S. (2004). An intro-
duction to biometric recognition. IEEE Transactions
on circuits and systems for video technology, 14(1):4–
20.
Kim, D., Hernandez, M., Choi, J., and Medioni, G.
(2017). Deep 3d face identification. arXiv preprint
arXiv:1703.10714.
Lathauwer, L. D., Moor, B. D., and Vandewalle, J. (2000).
On the best rank-1 and rank-(r1,r2,. . .,rn) approxima-
tion of higher-order tensors. SIAM J. Matrix Anal.
Appl., 21(4):1324–1342.
Papatheodorou, T. and Rueckert, D. (2007). 3d face recog-
nition. In Face Recognition. InTech.
Patil, H., Kothari, A., and Bhurchandi, K. (2015). 3-d face
recognition: features, databases, algorithms and chal-
lenges. Artificial Intelligence Review, 44(3):393–441.
Saleh, Y. and Edirisinghe, E. (2016). Novel approach to
enhance face recognition using depth maps. In Sys-
tems, Signals and Image Processing (IWSSIP), 2016
International Conference on, pages 1–4. IEEE.
Soldera, J., Schu, G., Schardosim, L. R., and Beltrao, E. T.
(2017). Facial biometrics and applications. IEEE In-
strumentation & Measurement Magazine, 20(2):4–10.
Trentin, E. and Gori, M. (2001). A survey of hybrid
ann/hmm models for automatic speech recognition.
Neurocomputing, 37(1):91–126.
Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. Int. J. Comput. Vision, 57(2):137–154.
Zaghetto, C., Aguiar, L. H. M., Zaghetto, A., Ralha, C. G.,
and de Barros Vidal, F. (2017). Agent-based frame-
work to individual tracking in unconstrained environ-
ments. Expert Systems with Applications, 87:118–
128.
Zhang, Z. (2012). Microsoft kinect sensor and its effect.
IEEE MultiMedia, 19(2):4–10.
Zhou, W., Chen, J.-x., and Wang, L. (2015). A rgb-d face
recognition approach without confronting the cam-
era. In Computer and Communications (ICCC), 2015
IEEE International Conference on, pages 109–114.
IEEE.
3D Face Recognition on Point Cloud Data - An Approaching based on Curvature Map Projection using Low Resolution Devices
273