Table 1: Accuracy values for different k.
Value of k 3 5 7 9
Accuracy 0.90 0.96 0.96 0.94
Table 2: Confusion Matrix.
Meli Giallo Rosso
Meli 100% 0 0
Giallo 0 86.67% 13.33 %
Rosso 0 0 100%
increase the scientific knowledge of these products.
We also plan to extend this notebook for other crops
introducing also other analysis tools. The system has
been designed to allow the farmer to trace cultivation
over time and to collect data that can be automatically
analysed.
Future work will be developed to produce automatic
procedure which can be used for decision making and
comparing advanced methodologies for image repre-
sentation and classification (e.g. deep learning).
ACKNOWLEDGEMENTS
We thank C.R.E.A for providing the dataset. We also
thank Joint Open Lab Wave of Catania (a research
laboratory of TELECOM) for helpful comments.
REFERENCES
Battiato, S., Farinella, G., Gallo, G., and Rav´ı, D. (2010).
Exploiting textons distributions on spatial hierarchy
for scene classification. EURASIP JOURNAL ON IM-
AGE AND VIDEO PROCESSING, 2010:1–13.
Bishop, C. M. (2006). Patter Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag, Berlin, Heidelberg.
Bosch, A., Muoz, X., and Mart, R. (2007). Which is the best
way to organize/classify images by content? Image
and Vision Computing, 25(6):778 – 791.
C. Wouter Bac, Eldert J. van Henten, J. H. and Edan, Y.
(2014). Harvesting robots for high-value crops: State-
of-the-art review and challenges ahead. Journal of
Field Robotics, 31(6):888–911.
Caruso, M., Ferlito, F., Licciardello, C., Allegra, M.,
Strano, M., Di Silvestro, S., Patrizia Russo, M.,
Pietro Paolo, D., Caruso, P., Las Casas, G., Stagno, F.,
Torrisi, B., Roccuzzo, G., Reforgiato Recupero, G.,
and Russo, G. (2016). Pomological diversity of the
italian blood orange germplasm. 213.
Codreanu, N., Varzaru, G., and Ionescu, C. (2014). So-
lar powered wireless multi-sensor device for an irriga-
tion system. In Proceedings of the 2014 37th Inter-
national Spring Seminar on Electronics Technology,
pages 442–447.
Farinella, G. and Battiato, S. (2011). Scene classification in
compressed and constrained domain. IET Computer
Vision, pages 320–334.
Farinella, G., Moltisanti, M., and Battiato, S. (2014). Clas-
sifying food images represented as bag of textons. In
2014 IEEE International Conference on image pro-
cessing, ICIP 2014. IEEE (The Institute of Electrical
and Electronics).
Gondchawar, N. and Kawitkar, R. S. (2016). Iot based smart
agriculture. 5:838–842.
Lipper, L., Thornton, P., Campbell, B., Baedeker, T.,
Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A.,
Garrity, D., Henry, K., Hottle, R., Jackson, L., Jarvis,
A., Kossam, F., Mann, W., McCarthy, N., Meybeck,
A., Neufeldt, H., Remington, T., and Torquebiau, E.
(2014). Climate smart agriculture for food security.
4:10681072.
Murabito, F., Palazzo, S., Spampinato, C., and Giordano, D.
(2017). Generating knowledge-enriched image anno-
tations for fine-grained visual classification. In Image
Analysis and Processing - ICIAP 2017, pages 332–
344, Cham. Springer International Publishing.
Prathibha, S. R., Hongal, A., and Jyothi, M. P. (2017). Iot
based monitoring system in smart agriculture. In 2017
International Conference on Recent Advances in Elec-
tronics and Communication Technology (ICRAECT),
pages 81–84.
Rapisarda, P. and Russo, G. (2000). Fruit quality of five
tarocco selections grown in italy. pages 1149–1153.
Sales, N., Remdios, O., and Arsenio, A. (2015). Wireless
sensor and actuator system for smart irrigation on the
cloud. In 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pages 693–698.
Sathyadevan, S., Kallingalthodi, H., and Hari, N. N.
(2011). Irignet: Intelligent communication network
for power-scarce rural india. In Proceedings of the
1st International Conference on Wireless Technolo-
gies for Humanitarian Relief, ACWR ’11, pages 465–
471, New York, NY, USA. ACM.
Tola, E., Lepetit, V., and Fua, P. (2010). Daisy: An effi-
cient dense descriptor applied to wide-baseline stereo.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 815–830.
United Nation, Department of Economic e Population Divi-
sion United Nations Social Affairs, D. (2017). World
population prospects, the 2017 revision.
Varghese, V. T., Sasidhar, K., and P, R. (2015). A status quo
of wsn systems for agriculture. In 2015 International
Conference on Advances in Computing, Communica-
tions and Informatics (ICACCI), pages 1775–1781.