Rejuvenation (WoSAR), 2011 IEEE Third
International Workshop on, pages 1–6. IEEE.
Cover, T. M. (1968). Rates of convergence for nearest
neighbor procedures. In Proceedings of the Hawaii
International Conference on Systems Sciences, pages
413–415.
Dumais, S., Platt, J., Heckerman, D., and Sahami, M.
(1998). Inductive learning algorithms and
representations for text categorization. In Proceedings
of the seventh international conference on Information
and knowledge management, pages 148–155. ACM.
Freund, Y., Schapire, R. E., et al. (1996). Experiments
with a new boosting algorithm. In Icml, volume 96,
pages 148–156. Bari, Italy.
Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. D.
(1995). Software rejuvenation: Analysis, module and
applications. In Fault-Tolerant Computing, 1995.
FTCS-25. Digest of Papers., Twenty-Fifth
International Symposium on, pages 381–390. IEEE.
Khoshgoftaar, T. M., Geleyn, E., and Nguyen, L. (2003).
Empirical case studies of combining software quality
classification models. In Quality Software, 2003.
Proceedings. Third International Conference on,
pages 40–49. IEEE.
Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007).
Supervised machine learning: A review of
classification techniques. Emerging artificial
intelligence applications in computer engineering,
160:3–24.
Matias, R. and Paulo Filho, J. (2006). An experimental
study on software aging and rejuvenation in web
servers. In Computer Software and Applications Con
ference, 2006. COMPSAC’06. 30th Annual
International, volume 1, pages 189–196. IEEE.
Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y.,
and Bener, A. (2010). Defect prediction from static
code features: current results, limitations, new
approaches. Automated Software Engineering,
17(4):375–407.
Mısırlı, A. T., Bener, A. B., and Turhan, B. (2011). An
industrial case study of classifier ensembles for
locating software defects. Software Quality Journal,
19(3):515–536.
Qin, F., Zheng, Z., Bai, C., Qiao, Y., Zhang, Z., and Chen,
C. (2015). Cross-project aging related bug prediction.
In Software Quality, Reliability and Security (QRS),
2015 IEEE International Conference on, pages 43–48.
IEEE.
Quinlan, J. R. (2014). C4. 5: programs for machine
learning. Elsevier.
Singh, A., Thakur, N., and Sharma, A. (2016). A review of
supervised machine learning algorithms. In Computing
for Sustainable Global Development (INDIACom),
2016 3rd International Conference on, pages 1310–
1315. IEEE.
Tai, A. T., Chau, S. N., Alkalaj, L., and Hecht, H. (1997).
On-board preventive maintenance: Analysis of
effectiveness and optimal duty period. In Object-
Oriented Real-Time Dependable Systems, 1997.
Proceedings., Third International Workshop on, pages
40–47. IEEE.
Trivedi, K. S., Vaidyanathan, K., and Goseva-
Popstojanova, K. (2000). Modeling and analysis of
software aging and rejuvenation. In Simulation
Symposium, 2000.(SS 2000) Proceedings. 33rd
Annual, pages 270–279. IEEE.
Vaidyanathan, K. and Trivedi, K. S. (2005). A
comprehensive model for software rejuvenation. IEEE
Transactions on Dependable and Secure Computing,
2(2):124–137.
Wang, T., Li, W., Shi, H., and Liu, Z. (2011). Software
defect prediction based on classifiers ensemble.
Journal of Information & Computational Science,
8(16):4241–4254.
Wolpert, D. H. (1992). Stacked generalization. Neural
networks, 5(2):241–259.
Zhao, L., Song, Q., and Zhu, L. (2008). Common software
aging-related faults in fault-tolerant systems. In
Computational Intelligence for Modelling Control &
Automation, 2008 International Conference on, pages
327–331. IEEE.