interesting point is to compare the proposed method
to other approaches of feedback linearization to de-
termine a threshold for the system size, where other
methods fail and the tensor methods is the only appli-
cable algorithm.
ACKNOWLEDGEMENTS
This work was partly sponsored by the project OB-
SERVE of the Federal Ministry of Economic Affairs
and Energy, Germany (Grant No.: 03ET1225B).
REFERENCES
Bader, B. W., Kolda, T. G., et al. (2015). Matlab tensor
toolbox version 2.6. Available online.
Cichocki, A., Mandic, D. P., Phan, A. H., Caiafa, C. F.,
Zhou, G., Zhao, Q., and Lathauwer, L. D. (2014).
Tensor decompositions for signal processing applica-
tions from two-way to multiway component analysis.
CoRR, abs/1403.4462.
Cichocki, A., Zdunek, R., Phan, A., and Amari, S. (2009).
Nonnegative matrix and tensor factorizations. Wiley,
Chichester.
Deutscher, J. (2005). Input-output linearization of nonlin-
ear systems using multivariable legendre polynomials.
Automatica, 41:299–304.
Ekman, M. (2005). Modeling and Control of Bilinear Sys-
tems: Application to the Activated Sludge Process.
PhD thesis, Uppsala University.
Grasedyk, L., Kressner, L., and Tobler, C. (2013). A lit-
erature survey of low-rank tensor approximation tech-
niques. GAMM-Mitteilungen, 36:53–78.
Hackbusch, W. (2012). Tensor Spaces and Numerical Ten-
sor Calculus, volume 42 of Springer Series in Com-
putational Mathematics. Springer-Verlag Berlin Hei-
delberg.
Isidori, A. (1995). Nonlinear Control Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 3rd edi-
tion.
Khalil, K. H. (1996). Nonlinear Systems. Prentice-Hall,
Inc.
Kolda, T. and Bader, B. (2009). Tensor decompositions and
applications. SIAM Review, 51(3):455–500.
Kruppa, K. and Lichtenberg, G. (2016). Comparison of cp
tensors, tucker tensors and tensor trains for represen-
tation of right hand sides of ordinary differential equa-
tions. In Workshop on Tensor Decomposition and Ap-
plications, Leuven.
Kruppa, K., Pangalos, G., and Lichtenberg, G. (2014). Mul-
tilinear approximation of nonlinear state space mod-
els. In 19th IFAC World Congress, Cape Town, pages
9474–9479. IFAC.
Lichtenberg, G. (2010). Tensor representation of boolean
functions and zhegalkin polynomials. In International
Workshop on Tensor Decompositions, Bari.
M
¨
uller, B. and Deutscher, J. (2005). Approximate input-
output linearization using l2-optimal bilinearization.
In Proceedings of the 44th IEEE Conference on De-
cision and Control and the European Control Confer-
ence.
M
¨
uller, T., Kruppa, K., Lichtenberg, G., and R
´
ehault,
N. (2015). Fault detection with qualitative models
reduced by tensor decomposition methods. IFAC-
PapersOnLine, 48(21):416 – 421. 9th IFAC Sympo-
sium on Fault Detection, Supervision and Safety for
Technical Processes, SAFEPROCESS.
Oseledets, I. (2011). Tensor-train decomposition. SIAM
Journal of Scientific Computing, 33(5):2295–2317.
Pangalos, G. (2016). Model-based controller design meth-
ods for heating systems. Dissertation, TU Hamburg,
Hamburg.
Pangalos, G., Eichler, A., and Lichtenberg, G. (2015). Hy-
brid Multilinear Modeling and Applications, pages
71–85. Springer International Publishing, Cham.
R
¨
obenack, K. (2005). Automatic differentiation and non-
linear controller design by exact linearization. Future
Generation Computer Systems, 21:1372–1379.
Vervliet, N., Debals, O., Sorber, L., Van Barel, M., and
De Lathauwer, L. (2016). Tensorlab 3.0. Available
online.
APPENDIX
In the Appendix the proofs of the arithmetic oper-
ations, i.e. multiplication, differentiation and Lie
derivative, for polynomials in tensor representation is
given. Furthermore, the proofs of th eouter product of
CP tensors and the control law for the feedback lin-
earizing controller for CP decomposed MTI systems
are presented here.
Proof of the Outer Product
Proof 1. Inserting the elementwise descriptions of X
and Y into the outer product (2), leads to
z(i
1
, . . . , i
n
, j
1
, . . . , j
m
) = x(i
1
, . . . , i
n
)y( j
1
, . . . , j
m
)
=
r
X
∑
k=1
λ
X
(k)u
1
(i
1
, k)···u
n
(i
n
, k)
·
r
Y
∑
k=1
λ
Y
(k)v
1
( j
1
, k)···v
m
( j
m
, k)
=λ
X
(1)λ
Y
(1)u
1
(i
1
,1)·· ·u
n
(i
n
,1)v
1
( j
1
,1)·· ·v
m
( j
m
,1)
+λ
X
(1)λ
Y
(2)u
1
(i
1
,1)·· ·u
n
(i
n
,1)v
1
( j
1
,2)·· ·v
m
( j
m
,2)
+ ··· + λ
X
(r
X
)λ
Y
(r
Y
)u
1
(i
1
, r
X
)· ·· v
m
( j
m
, r
Y
).
Comparing this representation of the outer product
with the elementwise description of the resulting ten-
Feedback Linearization of Multilinear Time-invariant Systems using Tensor Decomposition Methods
241