negligible, including encryption of DNN, or decryp-
tion of inferences. Nevertheless, considering the re-
source restriction on decentralized systems, encryp-
tion of input data as well as encrypted computations
are expected to have a major impact on the perfor-
mance of the overall system.
REFERENCES
Augasta, M. G. and Kathirvalavakumar, T. (2012). Reverse
engineering the neural networks for rule extraction
in classification problems. Neural processing letters,
35(2):131–150.
Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2011).
Fully homomorphic encryption without bootstrap-
ping. Cryptology ePrint Archive, Report 2011/277.
Chabanne, H., de Wargny, A., Milgram, J., Morel, C., and
Prouff, E. (2017). Privacy-preserving classification
on deep neural network. IACR Cryptology ePrint Ar-
chive, 2017:35.
Clevert, D.-A., Unterthiner, T., and Hochreiter, S.
(2015). Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint
arXiv:1511.07289.
Cramer, R., Damgård, I. B., et al. (2015). Secure multiparty
computation. Cambridge University Press.
Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive,
Report 2012/144.
Floares, A. G. (2008). A reverse engineering algorithm
for neural networks, applied to the subthalamopalli-
dal network of basal ganglia. Neural Networks, 21(2-
3):379–386.
Gentry, C. (2009). A fully homomorphic encryption scheme.
Stanford University.
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Na-
ehrig, M., and Wernsing, J. (2016). Cryptonets: Ap-
plying neural networks to encrypted data with high
throughput and accuracy. In International Conference
on Machine Learning, pages 201–210.
Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y.
(2016). Deep learning, volume 1. MIT press Cam-
bridge.
Graepel, T., Lauter, K., and Naehrig, M. (2012). Ml con-
fidential: Machine learning on encrypted data. In In-
ternational Conference on Information Security and
Cryptology, pages 1–21. Springer.
Halevi, S. and Shoup, V. (2014). Algorithms in helib. In
International cryptology conference, pages 554–571.
Springer.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resi-
dual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hesamifard, E., Takabi, H., and Ghasemi, M. (2017).
Cryptodl: Deep neural networks over encrypted data.
CoRR, abs/1711.05189.
Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by reducing inter-
nal covariate shift. In International conference on ma-
chine learning, pages 448–456.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems, pages 1097–1105.
Laine, K. and Player, R. (2016). Simple encrypted arithme-
tic library-seal (v2. 0). Technical report, Technical re-
port, September.
LeCun, Y. et al. (2015). Lenet-5, convolutional neural
networks. URL: http://yann. lecun. com/exdb/lenet,
page 20.
Liu, J., Juuti, M., Lu, Y., and Asokan, N. (2017). Oblivious
neural network predictions via minionn transformati-
ons. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,
pages 619–631. ACM.
Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier
nonlinearities improve neural network acoustic mo-
dels. In Proc. icml, volume 30, page 3.
Mohassel, P. and Zhang, Y. (2017). Secureml: A system
for scalable privacy-preserving machine learning. In
Security and Privacy (SP), 2017 IEEE Symposium on,
pages 19–38. IEEE.
Ren, J. S. and Xu, L. (2015). On vectorization of deep con-
volutional neural networks for vision tasks. In AAAI,
pages 1840–1846.
Shokri, R. and Shmatikov, V. (2015). Privacy-preserving
deep learning. In Proceedings of the 22nd ACM SIG-
SAC conference on computer and communications se-
curity, pages 1310–1321. ACM.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. (2016). Stealing machine learning models via
prediction apis. In USENIX Security Symposium, pa-
ges 601–618.
Uchida, Y., Nagai, Y., Sakazawa, S., and Satoh, S. (2017).
Embedding watermarks into deep neural networks. In
Proceedings of the 2017 ACM on International Confe-
rence on Multimedia Retrieval, pages 269–277. ACM.
SECRYPT 2018 - International Conference on Security and Cryptography
154