ACKNOWLEDGEMENTS
This work is funded by the Austrian Research Promo-
tion Agency (FFG) under grant 852658 (CODA). We
thank Walter Obenaus (Siemens Rail Automation) for
supplying us with test data.
REFERENCES
Amadi-Echendu, J. E., Willett, R., Brown, K., Hope, T.,
Lee, J., Mathew, J., Vyas, N., and Yang, B.-S. (2010).
What Is Engineering Asset Management?, pages 3–
16. Springer London, London.
Bagheri, B., Siegel, D., Zhao, W., and Lee, J. (2015).
A Stochastic Asset Life Prediction Method for
Large Fleet Datasets in Big Data Environment. In
ASME 2015 International Mechanical Engineering
Congress and Exposition, pages V014T06A010–
V014T06A010. American Society of Mechanical En-
gineers.
Dixon, S. J., Xu, Y., Brereton, R. G., Soini, H. A., Novotny,
M. V., Oberzaucher, E., Grammer, K., and Penn, D. J.
(2007). Pattern recognition of gas chromatography
mass spectrometry of human volatiles in sweat to dis-
tinguish the sex of subjects and determine potential
discriminatory marker peaks. Chemometrics and In-
telligent Laboratory Systems, 87(2):161–172.
Filzmoser, P., Liebmann, B., and Varmuza, K. (2009). Re-
peated double cross validation. Journal of Chemome-
trics, 23(4):160–171.
Friedman, J., Hastie, T., and Tibshirani, R. (2001). The
elements of statistical learning, volume 1. Springer
series in statistics New York.
Gertsbakh, I. (2013). Reliability theory: with applications
to preventive maintenance. Springer.
Grimmett, G. and Stirzaker, D. (2001). Probability and
random processes. Oxford university press.
Hoffmann, I., Serneels, S., Filzmoser, P., and Croux, C.
(2015). Sparse partial robust M regression. Chemome-
trics and Intelligent Laboratory Systems, 149:50–59.
Jenab, K., Noori, K., and Weinsier, P. D. (2014). Obsoles-
cence management in rail signalling systems: concept
and markovian modelling. International Journal of
Productivity and Quality Management, 14(1):21–35.
Klutke, G., Kiessler, P. C., and Wortman, M. A. (2003). A
critical look at the bathtub curve. IEEE Trans. Relia-
bility, 52(1):125–129.
Kurnaz, F. S., Hoffmann, I., and Filzmoser, P. (2017).
Robust and sparse estimation methods for high-
dimensional linear and logistic regression. Chemome-
trics and Intelligent Laboratory Systems.
Lee, J., Jin, C., and Bagheri, B. (2017). Cyber physical
systems for predictive production systems. Production
Engineering, 11(2):155–165.
Li, J., Tao, F., Cheng, Y., and Zhao, L. (2015). Big data
in product lifecycle management. The Internatio-
nal Journal of Advanced Manufacturing Technology,
81(1-4):667–684.
Ma, J. and Kim, N. (2017). Electronic part obsolescence fo-
recasting based on time series modeling. International
Journal of Precision Engineering and Manufacturing,
18(5):771–777.
Mooi, E., Sarstedt, M., and Mooi-Reci, I. (2018). Market
Research. Springer.
Mosallam, A., Medjaher, K., and Zerhouni, N. (2015).
Component based data-driven prognostics for com-
plex systems: Methodology and applications. In Re-
liability Systems Engineering (ICRSE), 2015 First In-
ternational Conference on, pages 1–7. IEEE.
Mosallam, A., Medjaher, K., and Zerhouni, N. (2016).
Data-driven prognostic method based on bayesian ap-
proaches for direct remaining useful life prediction.
Journal of Intelligent Manufacturing, 27(5):1037–
1048.
Randomservices.org (2017). Renewal processes. http://
www.randomservices.org/random/renewal/index.html
[Online; accessed 3-February-2018].
Sandborn, P., Prabhakar, V., and Ahmad, O. (2011). Fore-
casting electronic part procurement lifetimes to enable
the management of DMSMS obsolescence. Microe-
lectronics Reliability, 51(2):392–399.
Sandborn, P. A., Mauro, F., and Knox, R. (2007). A data
mining based approach to electronic part obsolescence
forecasting. IEEE Transactions on Components and
Packaging Technologies, 30(3):397–401.
Smit, S., Hoefsloot, H. C., and Smilde, A. K. (2008). Sta-
tistical data processing in clinical proteomics. Journal
of Chromatography B, 866(1-2):77–88.
Solomon, R., Sandborn, P. A., and Pecht, M. G. (2000).
Electronic part life cycle concepts and obsolescence
forecasting. IEEE Transactions on Components and
Packaging Technologies, 23(4):707–717.
Thaduri, A., Galar, D., and Kumar, U. (2015). Railway
assets: A potential domain for big data analytics. Pro-
cedia Computer Science, 53:457–467.
Vachtsevanos, G. J., Lewis, F., Hess, A., and Wu, B. (2006).
Intelligent fault diagnosis and prognosis for engineer-
ing systems. Wiley Online Library.
Wold, H. (1966). Nonlinear Estimation by Iterative Least
Squares Procedures in: David, FN (Hrsg.), Festschrift
for J. Neyman: Research Papers in Statistics, London.
Wold, H. (1980). Model construction and evaluation when
theoretical knowledge is scarce: Theory and applica-
tion of partial least squares. In Evaluation of econo-
metric models, pages 47–74. Elsevier.
Wold, S., Sj
¨
ostr
¨
om, M., and Eriksson, L. (2001). Pls-
regression: a basic tool of chemometrics. Chemo-
metrics and intelligent laboratory systems, 58(2):109–
130.
Wurl, A., Falkner, A., Haselb
¨
ock, A., and Mazak, A.
(2017). Using signifiers for data integration in rail
automation. In Proceedings of the 6th International
Conference on Data Science, Technology and Appli-
cations, volume 1, pages 172–179.
Combining Prediction Methods for Hardware Asset Management
23