REFERENCES
Abels, J. and Benner, P. (1999a). CAREX—A collection
of benchmark examples for continuous-time algebraic
Riccati equations (Version 2.0). SLICOT Working
Note 1999-14. Available: www.slicot.org.
Abels, J. and Benner, P. (1999b). DAREX—A collection of
benchmark examples for discrete-time algebraic Ric-
cati equations (Version 2.0). SLICOT Working Note
1999-16. Available: www.slicot.org.
Anderson, B. D. O. (1978). Second-order convergent al-
gorithms for the steady-state Riccati equation. Int.
J. Control, 28(2):295–306.
Anderson, B. D. O. and Moore, J. B. (1971). Linear
Optimal Control. Prentice-Hall, Englewood Cliffs,
New Jersey.
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Du Croz, J., Greenbaum, A., Ham-
marling, S., McKenney, A., and Sorensen, D. (1999).
LAPACK Users’ Guide: Third Edition. Software · En-
vironments · Tools. SIAM, Philadelphia.
Armstrong, E. S. and Rublein, G. T. (1976). A stabiliza-
tion algorithm for linear discrete constant systems.
IEEE Trans. Automat. Contr., AC-21(4):629–631.
Arnold, III, W. F. and Laub, A. J. (1984). Generalized
eigenproblem algorithms and software for algebraic
Riccati equations. Proc. IEEE, 72(12):1746–1754.
Balzer, L. A. (1980). Accelerated convergence of the
matrix sign function method of solving Lyapunov,
Riccati and other matrix equations. Int. J. Control,
32(6):1057–1078.
Benner, P. (1997). Contributions to the Numerical So-
lution of Algebraic Riccati Equations and Related
Eigenvalue Problems. Dissertation, Fakult¨at f¨ur Math-
ematik, Technische Universit¨at Chemnitz–Zwickau,
D–09107 Chemnitz, Germany.
Benner, P. (1998). Accelerating Newton’s method for
discrete-time algebraic Riccati equations. In Beghi,
A., Finesso, L., and Picci, G., editors, Mathemati-
cal Theory of Networks and Systems, Proceedings of
the MTNS-98 Symposium held in Padova, Italy, July,
1998, 569–572. Il Poligrafo, Padova, Italy.
Benner, P. and Byers, R. (1998). An exact line search
method for solving generalized continuous-time alge-
braic Riccati equations. IEEE Trans. Automat. Contr.,
43(1):101–107.
Benner, P., Kressner, D., Sima, V., and Varga, A.
(2010). Die SLICOT-Toolboxen f¨ur Matlab. at—
Automatisierungstechnik, 58(1):15–25.
Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and
Varga, A. (1999). SLICOT — A subroutine library
in systems and control theory. In Datta, B. N., edi-
tor, Applied and Computational Control, Signals, and
Circuits, vol. 1, ch. 10, 499–539. Birkh¨auser, Boston.
Benner, P. and Sima, V. (2003). Solving algebraic Riccati
equations with SLICOT. In Proceedings of The 11th
Mediterranean Conference on Control and Automa-
tion MED’03, June 18–20 2003, Rhodes, Greece.
Benner, P., Sima, V., and Voigt, M. (2016). Al-
gorithm 961: Fortran 77 subroutines for the so-
lution of skew-Hamiltonian/Hamiltonian eigenprob-
lems. ACM Transactions on Mathematical Software
(TOMS), 42(3):1–26.
Bini, D. A., Iannazzo, B., and Meini, B. (2012). Numeri-
cal Solution of Algebraic Riccati Equations. SIAM,
Philadelphia.
Bunse-Gerstner, A. and Mehrmann, V. (1986). A symplec-
tic QR like algorithm for the solution of the real alge-
braic Riccati equation. IEEE Trans. Automat. Contr.,
AC–31(12):1104–1113.
Byers, R. (1987). Solving the algebraic Riccati equa-
tion with the matrix sign function. Lin. Alg. Appl.,
85(1):267–279.
Chu, E.-W., Fan, H.-Y., and Lin, W.-W. (2005). A structure-
preserving doubling algorithm for continuous-time al-
gebraic Riccati equations. Lin. Alg. Appl., 386:55–80.
Ciubotaru, B. D. and Staroswiecki, M. (2009). Comparative
study of matrix Riccati equation solvers for parametric
faults accommodation. In Proceedings of the 10th Eu-
ropean Control Conference, 23-26 August 2009, Bu-
dapest, Hungary, 1371–1376.
Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling, S.
(1990). Algorithm 679: A set of Level 3 Basic Lin-
ear Algebra Subprograms. ACM Trans. Math. Softw.,
16(1):1–17, 18–28.
Gardiner, J. D. and Laub, A. J. (1986). A generalization of
the matrix sign function solution for algebraic Riccati
equations. Int. J. Control, 44:823–832.
Giftthaler, M., Neunert, M., St¨auble, M., and Buchli,
J. (2018). The control toolbox — An open-
source C++ library for robotics, optimal and
model predictive control. [Online]. Available:
https://arxiv.org/abs/1801.04290.
Golub, G. H. and Van Loan, C. F. (1996). Matrix Computa-
tions. The Johns Hopkins University Press, Baltimore,
MA, 3rd edition.
Guo, C. and Laub, A. J. (2000). On a Newton-like method
for solving algebraic Riccati equations. SIAM J. Ma-
trix Anal. Appl., 21(2):694–698.
Guo, C.-H., Iannazzo, B., and Meini, B. (2007). On the
doubling algorithm for a (shifted) nonsymmetric alge-
braic Riccati equation. SIAM J. Matrix Anal. Appl.,
29(4):1083–1100.
Guo, P.-C. (2016). A modified large-scale structure-
preserving doubling algorithm for a large-scale Ric-
cati equation from transport theory. Numerical Algo-
rithms, 71(3):541–552.
Guo, X.-X., Lin, W.-W., and Xu, S.-F. (2006). A structure-
preserving doubling algorithm for nonsymmetric al-
gebraic Riccati equation. Numer. Math., 103(3):393–
412.
Hammarling, S. J. (1982). Newton’s method for solving the
algebraic Riccati equation. NPC Report DIIC 12/82,
National Physics Laboratory, Teddington, Middlesex
TW11 OLW, U.K.
Hewer, G. A. (1971). An iterative technique for the com-
putation of the steady state gains for the discrete op-
timal regulator. IEEE Trans. Automat. Contr., AC–
16(4):382–384.