5 CONCLUSION
In this paper, we have presented a global control strat-
egy that combines feedforward and feedback actions
for a soft actuated knee rehabilitation device. The de-
signed device is a 5-bars-linkage underactuated sys-
tem. However, to gain an insight of the control strat-
egy and the requirements, we have presented an ap-
proach to control a soft-actuated-one DoF system,
when performing the desired motion during physical
knee rehabilitation. The specific requirements of the
system, that we have proved to achieve with the pro-
posed combined control strategy are to keep intrinsic
stiffness of the system, stability, low velocity when
approaching to the reference, and disturbance rejec-
tion. The feedforward strategy compensates loading
disturbances while the feedback strategy acts in a de-
fined threshold to maintain the stiffness of the sys-
tem. When approaching the 80% of the reference,
we switch the control parameters in order to have a
lower velocity near to the reference, meeting the de-
sired specifications. In future works, we will study the
validity of the control strategy in the 5-bars-linkage-
rehabilitation device.
ACKNOWLEDGMENT
This work is funded by Universidad Militar Nueva
Granada- Vicerrector
´
ıa de Investigaciones, under
research grant for project IMP-ING-2291, entitled
’Dise
˜
no de un prototipo para rehabilitaci
´
on de rodilla
mediante el uso de actuadores flexibles’.
REFERENCES
Andrade, A. O., Pereira, A. A., Walter, S., Almeida, R.,
Loureiro, R., Compagna, D., and Kyberd, P. J. (2014).
Bridging the gap between robotic technology and
health care. Biomedical Signal Processing and Con-
trol, 10:65 – 78.
Balasubramanian, S., Wei, R., Perez, M., Shepard, B.,
Koeneman, E., Koeneman, J., and He, J. (2008). Ru-
pert: An exoskeleton robot for assisting rehabilita-
tion of arm functions. In 2008 Virtual Rehabilitation,
pages 163–167.
De-Luca, A. and Flacco, F. (2011). A pd-type regulator
with exact gravity cancellation for robots with flexi-
ble joints. In 2011 IEEE International Conference on
Robotics and Automation, pages 317–323.
Della-Santina, C., Bianchi, M., Grioli, G., Angelini, F.,
Catalano, M. G., Garabini, M., and Bicchi, A. (2017).
Controlling soft robots: Balancing feedback and feed-
forward elements. IEEE Robot. Automat. Mag.,
24(3):75–83.
Grioli, G., Wolf, S., Garabini, M., Catalano, M., Burdet,
E., Caldwell, D., Carloni, R., Friedl, W., Greben-
stein, M., Laffranchi, M., Lefeber, D., Stramigioli, S.,
Tsagarakis, N., van Damme, M., Vanderborght, B.,
Albu-Schaeffer, A., and Bicchi, A. (2015). Variable
stiffness actuators: The user?s point of view. The In-
ternational Journal of Robotics Research, 34(6):727–
743.
Jamwal, P. K., Hussain, S., Ghayesh, M. H., and Rogozina,
S. V. (2016). Impedance control of an intrinsically
compliant parallel ankle rehabilitation robot. IEEE
Transactions on Industrial Electronics, 63(6):3638–
3647.
Jensen, G. M. and Lorish, C. D. (1994). Promoting pa-
tient cooperation with exercise programs. linking re-
search, theory, and practice. Arthritis and Rheuma-
tism, 7:181–189.
Koller-Hodac, A., Leonardo, D., Walpen, S., and Felder,
D. (2010). A novel robotic device for knee rehabil-
itation improved physical therapy through automated
process. In 2010 3rd IEEE RAS EMBS International
Conference on Biomedical Robotics and Biomecha-
tronics, pages 820–824.
Mghames, S., Laghi, M., Santina, C. D., Garabini, M.,
Catalano, M., Grioli, G., and Bicchi, A. (2017). De-
sign, control and validation of the variable stiffness
exoskeleton flexo. In 2017 International Conference
on Rehabilitation Robotics (ICORR), pages 539–546.
Ozparpucu, M. C. and Albu-Schaffer, A. (2014). Optimal
control strategies for maximizing the performance of
variable stiffness joints with nonlinear springs. In 53rd
IEEE Conference on Decision and Control, pages
1409–1416.
Petit, F. and Albu-Schffer, A. (2011). State feedback damp-
ing control for a multi dof variable stiffness robot arm.
In 2011 IEEE International Conference on Robotics
and Automation, pages 5561–5567.
Petit, F., Daasch, A., and Albu-Schffer, A. (2015).
Backstepping control of variable stiffness robots.
IEEE Transactions on Control Systems Technology,
23(6):2195–2202.
Rifa
¨
ı, H., Mohammed, S., Djouani, K., and Amirat, Y.
(2017). Toward lower limbs functional rehabilitation
through a knee-joint exoskeleton. IEEE Transactions
on Control Systems Technology, 25(2):712–719.
Romero A., M. L., Valbuena, Y., Velasco, A., and Solaque,
L. (2017). Soft-actuated modular knee-rehabilitation
device: Proof of concept. In Proceedings of the Inter-
national Conference on Bioinformatics Research and
Applications 2017, ICBRA 2017, pages 71–78, New
York, NY, USA. ACM.
Umivale, P. S. (2011). Patolog
´
ıa de la rodilla: Gu
´
ıa de
manejo cl
´
ınico.
Vouga, T., Zhuang, K. Z., Olivier, J., Lebedev, M. A.,
Nicolelis, M. A. L., Bouri, M., and Bleuler, H. (2017).
Exio: A brain-controlled lower limb exoskeleton for
rhesus macaques. IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 25(2):131–141.
Knee Rehabilitation Device with Soft Actuation: An Approach to the Motion Control
161