Gama, N. and Nguyen, P. Q. (2008b). Finding short lattice
vectors within Mordell’s inequality. In Proceedings
of the fortieth annual ACM symposium on Theory of
computing, pages 207–216. ACM.
Gama, N., Nguyen, P. Q., and Regev, O. (2010). Lattice
enumeration using extreme pruning. In Annual In-
ternational Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 257–278.
Springer.
Gentry, C. and Szydlo, M. (2002). Cryptanalysis of the re-
vised NTRU signature scheme. In International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, pages 299–320. Springer.
Goldreich, O., Goldwasser, S., and Halevi, S. (1997).
Public-key cryptosystems from lattice reduction prob-
lems. In Advances in Cryptology-CRYPTO’97: 17th
Annual International Cryptology Conference, Santa
Barbara, California, USA, August 1997. Proceedings,
page 112. Springer.
Goldreich, O., Micciancio, D., Safra, S., and Seifert, J.-P.
(1999a). Approximating shortest lattice vectors is not
harder than approximating closest lattice vectors. In-
formation Processing Letters, 71(2):55–61.
Goldreich, O., Ron, D., and Sudan, M. (1999b). Chinese
remaindering with errors. In Proceedings of the thirty-
first annual ACM symposium on Theory of computing,
pages 225–234. ACM.
Hanrot, G., Pujol, X., and Stehl
´
e, D. (2011a). Algorithms
for the shortest and closest lattice vector problems. In
International Conference on Coding and Cryptology,
pages 159–190. Springer.
Hanrot, G., Pujol, X., and Stehl
´
e, D. (2011b). Analyzing
blockwise lattice algorithms using dynamical systems.
In CRYPTO, volume 6841, pages 447–464. Springer.
Hanrot, G. and Stehl
´
e, D. (2007). Improved analysis of
kannans shortest lattice vector algorithm. In Annual
International Cryptology Conference, pages 170–186.
Springer.
Hermite, C. (1850). Extraits de lettres de M. Ch. Hermite
`
a
M. Jacobi sur diff
´
erents objects de la th
´
eorie des nom-
bres. Journal f
¨
ur die reine und angewandte Mathe-
matik, 40:261–277.
Hoffstein, J., Pipher, J., and Silverman, J. H. (1998). NTRU:
A ring-based public key cryptosystem. In Interna-
tional Algorithmic Number Theory Symposium, pages
267–288. Springer.
Kannan, R. (1987a). Algorithmic geometry of numbers. An-
nual review of computer science, 2(1):231–267.
Kannan, R. (1987b). Minkowski’s convex body theorem
and integer programming. Mathematics of operations
research, 12(3):415–440.
Khot, S. (2005). Hardness of approximating the short-
est vector problem in lattices. Journal of the ACM
(JACM), 52(5):789–808.
Korkine, A. and Zolotareff, G. (1873). Sur les formes
quadratiques. Mathematische Annalen, 6(3):366–389.
Laarhoven, T., van de Pol, J., and de Weger, B. (2012).
Solving hard lattice problems and the security of
lattice-based cryptosystems. IACR Cryptology EPrint
Archive, 2012:533.
Lenstra, A. K., Lenstra, H. W., and Lov
´
asz, L. (1982). Fac-
toring polynomials with rational coefficients. Mathe-
matische Annalen, 261(4):515–534.
Magliveras, S. S., van Trung, T., and Wei, W. (2008). Prim-
itive sets in a lattice. Australasian Journal of Combi-
natorics, 40:173.
Merkle, R. and Hellman, M. (1978). Hiding information
and signatures in trapdoor knapsacks. IEEE transac-
tions on Information Theory, 24(5):525–530.
Micciancio, D. (2001). The hardness of the closest vector
problem with preprocessing. IEEE Transactions on
Information Theory, 47(3):1212–1215.
Micciancio, D. (2008). Efficient reductions among lattice
problems. In Proceedings of the nineteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
84–93. Society for Industrial and Applied Mathemat-
ics.
Micciancio, D. and Goldwasser, S. (2012). Complexity of
lattice problems: a cryptographic perspective, volume
671. Springer Science & Business Media.
Micciancio, D. and Voulgaris, P. (2013). A determinis-
tic single exponential time algorithm for most lattice
problems based on voronoi cell computations. SIAM
Journal on Computing, 42(3):1364–1391.
Micciancio, D. and Walter, M. (2016). Practical, predictable
lattice basis reduction. In Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, pages 820–849. Springer.
Minkowski, H. (1905). Diskontinuit
¨
atsbereich f
¨
ur arith-
metische
¨
aquivalenz. Journal f
¨
ur die reine und ange-
wandte Mathematik, 129:220–274.
Newman, M. (1972). Integral matrices, volume 45. Aca-
demic Press.
Nguyen, P. Q. (2009). Hermite’s constant and lattice algo-
rithms. In The LLL Algorithm, pages 19–69. Springer.
Schnorr, C.-P. (1987). A hierarchy of polynomial time lat-
tice basis reduction algorithms. Theoretical computer
science, 53(2):201–224.
Schnorr, C.-P. and Euchner, M. (1994). Lattice basis reduc-
tion: Improved practical algorithms and solving sub-
set sum problems. Mathematical programming, 66(1-
3):181–199.
van Emde Boas, P. (1981). Another NP-complete partition
problem and the complexity of computing short vec-
tors in a lattice. Universiteit van Amsterdam. Mathe-
matisch Instituut.
Wen, J. and Chang, X. (2017a). A KZ reduction algorithm.
arXiv preprint arXiv:1702.08152.
Wen, J. and Chang, X. (2017b). Success probability of
the Babai estimators for box-constrained integer lin-
ear models. IEEE Transactions on Information The-
ory, 63(1):631–648.
Wen, J., Tong, C., and Bai, S. (2016). Effects of some
lattice reductions on the success probability of the
zero-forcing decoder. IEEE Communications Letters,
20(10):2031–2034.
Wubben, D., Seethaler, D., Jald
´
en, J., and Matz, G. (2011).
Lattice reduction. IEEE Signal Processing Magazine,
28(3):70–91.
A Novel Lattice Reduction Algorithm
501