duces dimensionality of the problem. Effectiveness
of the method is strictly dependent on the length of
the impulse response which is specific for the whole
class of Wiener-type systems, where linear dynamic
block is followed by static nonlinearity (”course of
dimensionality”). In consequence, proposed strategy
is rather recommended for short memory dynamic fil-
ters, but the class of admissible nonlinearities is rel-
atively broad. More general cases are remained for
further research.
ACKNOWLEDGEMENTS
The work was supported by the National Science Cen-
tre, Poland, Grant No. 2016/21/B/ST7/02284.
REFERENCES
Bai, E.-W. (1998). An optimal two-stage identification al-
gorithm for Hammerstein-Wiener nonlinear systems.
Automatica, 34(3):333–338.
Bai, E.-W. (2010). Non-parametric nonlinear system identi-
fication: An asymptotic minimum mean squared error
estimator. IEEE Transactions on Automatic Control,
55(7):1615–1626.
Chen, H. and Zhao, W. (2014). Recursive Identification and
Parameter Estimation. CRC Press.
Giannakis, G. B. and Serpedin, E. (2001). A bibliography
on nonlinear system identification. Signal Processing,
81(3):533 – 580. Special section on Digital Signal
Processing for Multimedia.
Giri, F. and Bai, E. (2010). Block-oriented Nonlinear Sys-
tem Identification. Springer-Verlag London, London.
G
´
omez, J. C. and Jutan, A. (2003). Identification and model
predictive control of a pH neutralization process based
on linear and Wiener models. IFAC Proceedings Vol-
umes, 36(16):1507 – 1512. 13th IFAC Symposium on
System Identification (SYSID 2003), Rotterdam, The
Netherlands, 27-29 August, 2003.
Hasiewicz, Z. and Mzyk, G. (2004). Combined parametric-
nonparametric identification of Hammerstein sys-
tems. IEEE Transactions on Automatic Control,
49(8):1370–1375.
Hasiewicz, Z., Pawlak, M., and
´
Sliwinski, P. (2005). Non-
parametric identification of nonlinearities in block-
oriented systems by orthogonal wavelets with com-
pact support. IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, 52(2):427–442.
Kalafatis, A. D., Wang, L., and Cluett, W. R. (2005). Identi-
fication of time-varying pH processes using sinusoidal
signals. Automatica, 41(4):685 – 691.
Kincaid, D. and Cheney, W. (1991). Numerical Analysis:
Mathematics of Scientific Computing. Brooks/Cole
Publishing Co., Pacific Grove, CA, USA.
Lee, Y. J., Sung, S. W., Park, S., and Park, S. (2004). Input
test signal design and parameter estimation method
for the Hammerstein-Wiener processes. Industrial &
Engineering Chemistry Research, 43(23):7521–7530.
Mzyk, G. (2007). A censored sample mean approach
to nonparametric identification of nonlinearities in
Wiener systems. IEEE Transactions on Circuits and
Systems II: Express Briefs, 54(10):897–901.
Mzyk, G., Biega
´
nski, M., and Kozdra
´
s, B. (2017). Multi-
stage identification of an N-L-N Hammerstein-Wiener
system. In 2017 22nd International Conference on
Methods and Models in Automation and Robotics
(MMAR), pages 343–346.
Mzyk, G. and Wachel, P. (2017). Kernel-based identifi-
cation of Wiener-Hammerstein system. Automatica,
83:275 – 281.
Rubio, J. and Yu, W. (2007). Stability analysis of nonlin-
ear system identification via delayed neural networks.
IEEE Transactions on Circuits and Systems II: Ex-
press Briefs, 54(2):161–165.
Sj
¨
oberg, J., Lauwers, L., and Schoukens, J. (2012). Iden-
tification of Wiener-Hammerstein models: Two algo-
rithms based on the best split of a linear model ap-
plied to the SYSID’09 benchmark problem. Control
Engineering Practice, 20(11):1119 – 1125. Special
Section: Wiener-Hammerstein System Identification
Benchmark.
S
¨
oderstr
¨
om, T. and Stoica, P., editors (1988). System Identi-
fication. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.
Wand, M. and Jones, M. (1994). Kernel Smoothing. Chap-
man & Hall/CRC Monographs on Statistics & Ap-
plied Probability. Taylor & Francis.
Wills, A., Sch
¨
on, T. B., Ljung, L., and Ninness, B. (2013).
Identification of Hammerstein-Wiener models. Auto-
matica, 49(1):70–81.
Multi–level Identification of Hammerstein–Wiener (N–L–N) System in Active Experiment
361